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Abstract

We re-visit the problem of the spreading of a thin two-dimensional drop of incompressible Newtonian fluid
on a uniformly heated or cooled smooth horizontal substrate when thermocapillary effects are significant. The
dynamics of the moving contact line are modelled by a “Tanner Law” relating the contact angle to the speed
of the contact line. The present work builds on earlier theoretical investigations by Burelbach, Bankoff and
Davis [1] and Ehrhard and Davis [2], the latter of whom derived the non-linear partial differential equation
governing the free-surface profile of the drop. By adapting the approach used by Holland, Duffy and Wilson [3]
we obtain the (implicit) exact solution of the two-dimensional equation in the case of quasi-steady motion. We
consider the behaviour of the solution in various asymptotic limits which confirm and extend some results of
Ehrhard and Davis [2]. We show that multiple solutions are possible for the case of a pendent drop on an
appropriately cooled substrate; the three solutions are shown to be qualitatively different in both shape and flow
pattern.

1 Introduction

The spreading of a thin drop is a fundamental problem in fluid mechanics, with a vast number of
industrial applications. The review article by Oron, Davis and Bankoff [4] gives an excellent overview
of the recent theoretical work done on this and many other thin-film flows. The pioneering work on
non-isothermal thin-film flow was by Burelbach, Bankoff and Davis [1] who formulated and analysed
the general evolution equation for a two-dimensional thin film of fluid on a uniformly heated or cooled
substrate, including the effects of mass loss, vapour recoil, thermocapillarity, surface tension, gravity
and long-range inter-molecular attraction. Ehrhard and Davis [2] used a special case of this equation
(and its axisymmetric analogue) to study the quasi-steady spreading of both two-dimensional and
axisymmetric drops on a uniformly heated or cooled horizontal substrate subject to thermocapillary
effects. More recent work by Anderson and Davis [5], Ajaev [6] and Hu and Larson [7] have used a
similar approach to study evaporating drops.

In this paper we shall re-visit the two-dimensional problem studied by Ehrhard and Davis [2] and,
by adopting the approach used by Holland, Duffy and Wilson [3], obtain the (implicit) exact solution
of the ordinary differential equation for the free-surface profile of the drop.

2 Formulation

Consider the quasi-steady spreading of a two-dimensional drop of an incompressible Newtonian fluid
with uniform density ρ, viscosity µ, specific heat c and thermal conductivity k th on a smooth horizontal
substrate. The velocity u = (u, v,w), pressure p and temperature T of the fluid are governed by the
familiar mass-conservation, Navier-Stokes and energy equations referred to the Cartesian coordinates
Oxyz indicated in Figure 1. At the solid substrate z = 0 the fluid velocity is zero and the temperature
is equal to the prescribed uniform substrate temperature T0 (different from the prescribed uniform
temperature T∞ of the surrounding vapour). On the free surface z = h(x, t) the appropriate boundary
conditions are normal and tangential stress balances, an energy balance and the kinematic condition.
We take ρ, µ, c, kth and the unit surface thermal conductance αth to be constants, but we assume that
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Figure 1: Geometry of the problem.

the surface tension γ depends linearly on temperature according to

γ(T ) = γ0 − λ(T − T0), (1)

where λ = −dγ/dT is a positive constant and γ0 is the constant surface tension at T = T0. We shall
consider only solutions that are symmetric about x = 0 and smooth at x = 0, so that they satisfy

hx = 0, hxxx = 0 (2)

at x = 0; therefore hereafter we need consider the solution in 0 ≤ x ≤ a only (with the behaviour in
−a ≤ x ≤ 0 given by symmetry). At the position of the contact line x = a(t) at which h = 0 the contact
angle takes the value θ = θ(t). We shall follow Ehrhard and Davis [2] and assume that the velocity of
the contact line depends on the contact angle according to an empirically determined “Tanner Law” in
the form

at = κ(θ − θ∞)m, (3)

where κ is an empirically determined coefficient with dimensions of velocity, θ∞ is the equilibrium
value of θ (which may be zero or non-zero), and m is an odd number, usually 1 or 3. The constant
volume of the drop (per unit width in the transverse direction), V , is given by

V = 2
∫ a

0
h dx. (4)

In order to make analytical progress we follow many previous authors (notably, Ehrhard and Davis [2])
and consider the case of a thin drop whose cross section is slender (with, in particular, θ � 1) and
non-dimensionalise the dependent and independent variables as follows:
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z
√
θ0V

, h∗ =
h
√
θ0V

, t∗ =
κθ

m+ 1
2

0 t
√

V
, θ∗ =

θ

θ0
,

u∗ =
u
κθm

0
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2
0
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,

(5)

where θ0 = θ(0); in this scaling the volume of the drop is V ∗ = 1. Note that Ehrhard and Davis [2]
used a different non-dimensionalisation involving a0 = a(0). Moreover, for quasi-steady motion the
volume V cannot be prescribed independently of a(0) and θ(0) as was done by Ehrhard and Davis [2];
this oversight in Ehrhard and Davis’s [2] analysis was subsequently pointed out and corrected by
Ehrhard [8, Appendix]. For simplicity we immediately drop the superscript stars. The leading order
equations and boundary conditions can be readily solved, and the pressure and temperature are found
to be

Cp = G(h − z) − hxx , T =
1 + B(h − z)

1 + Bh
. (6)



The velocity and streamfunction are given by

Cu =
Mhxz(3z − 2h)

4h(1 + Bh)2
, (7)

Cw =
Mz2

4h2(1 + Bh)3

[

h(1 + Bh)(h − z)hxx + h2
x (z + Bh(3z − 2h))

]

, (8)

Cψ =
Mhxz2(h − z)

4h(1 + Bh)2
, (9)

where h satisfies the third-order ordinary differential equation

(hxx −Gh)x +
3Mhx

2h(1 + Bh)2
= 0, (10)

to be integrated subject to (2), (4) and

h = 0, hx = −θ at x = a, (11)

and where the non-dimensional capillary, Biot, Bond and Marangoni numbers are given by

C =
µκ

γ0θ
3−m
0

, B =
αth
√
θ0V

kth
, G =

ρgV
γ0θ0

, M =
αth
√

Vγ0(T0 − T∞)

kthγ0θ
3
2
0

, (12)

respectively.

3 Implicit Solution of Equation (10)

Holland et al. [3, Eq. 36] obtained an equation equivalent to (10) for the transverse profile of a thin
rivulet draining steadily down a uniformly heated or cooled substrate in the presence of thermocap-
illary effects. In their work Holland et al. [3] obtained an implicit solution to the equation, and we
can readily adapt their solution to the present quasi-steady problem. Specifically, it is found that the
solution of (10) may be written in the implicit form

x = hm

∫ 1

h/hm

1

[F(s)]
1
2

ds (13)

for 0 ≤ x ≤ a; the constant-volume condition (4) and the condition h = 0 when x = a lead to

1 = 2h2
m

∫ 1

0

s

[F(s)]
1
2

ds, (14)

a = hm

∫ 1

0

1

[F(s)]
1
2

ds, (15)

respectively, where hm denotes the maximum height of the drop at x = 0, and we have defined

F(s) = (1 − s)(θ2 −Gh2
ms) − 3Mhms log

(

(1 + Bhm)s
1 + Bhms

)

. (16)

Moreover, with (14) equation (15) may be written

a =
1

2hm
+ hm

∫ 1

0

1 − s

[F(s)]
1
2

ds. (17)



Equation (14) is an algebraic equation determining hm, and then (15) determines a explicitly, and (13)
determines h implicitly. The evolution of the drop is determined by the Tanner Law

at = (θ − θ∞)m (18)

subject to the the initial condition θ(0) = 1. For brevity we henceforth restrict our attention to the limit
B→ 0.

For later use we note here that, in general, the integrands in (13)–(15) are finite except when s→ 1.
Expanding F near s = 1 yields

F(s) = C1(1 − s) +C2(1 − s)2 + O(1 − s)3 (19)

as s→ 1, where

C1 = θ
2 −Gh2

m + 3Mhm, C2 = Gh2
m −

3Mhm

2
. (20)

Since F must be positive as s → 1− (h → h−m) we have C1 ≥ 0, and we note that the singularities in
(13)–(15) as s→ 1 are integrable if C1 > 0.

4 Asymptotic Results

In the limit of strong heating M → ∞ equation (14) can be satisfied only if the solution for hm satisfies
hm → ∞ and hm = o(M). The integrals in (13)–(15) are dominated by global contributions with
integrands s1/2(−3Mhm log s)−1/2 and (−3Mhms log s)1/2; we thus find that at leading order hm and a
are given by

hm ∼
(

9M
8π

) 1
3

, a ∼
(

π
√

3M

) 1
3

(21)

as M → ∞, showing that hm → ∞ and a→ 0 in this limit. Moreover (13) shows that at leading order
the free-surface profile is given by

h ∼ hm exp

(

−2
[

erf−1
( x
a

)]2
)

, (22)

where erf−1 denotes the inverse of the error function.
In the limit of strong cooling M̄ = −M → ∞ the maximum height hm must be finite for the

integral in (14) to be real, but equation (14) can be satisfied at leading order only if C1 = 0 in (20).
This determines hm at leading order and a is then determined at leading order from (17); we thus find
that

hm ∼
θ2

3M̄
, a ∼

3M̄

2θ2
(23)

as M̄ → ∞. Moreover (13) shows that the free-surface profile is flat, with h ∼ hm, except in a boundary
layer near x = a.

Ehrhard and Davis [2, Eq. 7.8p] solved (10) numerically and found that in the case G = 0 and
θ∞ , 0, the equilibrium value of a, denoted by a∞, is given by

a∞ ∼
1.48M̄

θ2
∞

(24)

as M̄ → ∞. Our leading order results (23) confirm the form of (24) and show that the numerically
determined factor 1.48 should actually be 3/2. Moreover, our results show that in the limit M̄ → ∞
the corrected version of (24) is valid for all values of G and, when a∞ is replaced by a and θ∞ is
replaced by θ , 0, is valid for all values of t.
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â
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Figure 2: Variation of ĥm = hm/
√
θ and â = a

√
θ plotted as functions of M̂ = M/θ3/2 for a range of

values of Ĝ = G/θ.

Similarly, Ehrhard and Davis [2, Eq. 7.5p] showed that for θ = G = 0, a is given by

a3 M = k3, (25)

for all values of M, where k was found numerically to be approximately 1.22. When θ = G = 0,
evaluating the integrals in (14) and (15) yields

hm =

(

9M
8π

) 1
3

, a =

(

π
√

3M

) 1
3

, (26)

for all values of M. This shows that k = (π/
√

3)1/3 ' 1.2195 confirming the numerical value given by
Ehrhard and Davis [2].

5 Discussion

By re-scaling the variables as follows:

ĥm =
hm√
θ
, â = a

√
θ, M̂ =

M

θ
3
2

, Ĝ =
G
θ

(27)



2 4

0.1

1 2

0.2

0.4

0.5

0.5

1

PSfrag replacements

M̂
ĥm
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Figure 3: The three possible solutions for the drop profiles and streamlines for the case Ĝ = −30 and
M̂ = −4. The corresponding maximum heights are (a) ĥm ' 1.45, (b) ĥm ' 0.43, (c) ĥm ' 0.12.
The dashed curves z = 2h/3, which the streamlines cross vertically, and the stagnation points are also
shown. Note that in (b) the streamlines are not plotted at equal intervals in ψ.

(for θ , 0) we are able to remove explicit reference to θ from the problem, that is, in terms of the
hatted variables in (27), the solution is again given by (13)–(16) but with θ set to unity.

Figure 2 shows the variation of the re-scaled maximum height ĥm and the re-scaled semi-width â
with the re-scaled Marangoni number M̂ for selected values of the re-scaled Bond number Ĝ. Figure
2(b) is in good agreement with Ehrhard and Davis [2, Fig. 8(b)] who show a∞ as a function of M
for the particular case G = 0 and θ∞ = 0.5. Figure 2(b) extends the previous results to all time t
and shows that the behaviour given by Ehrhard and Davis [2, Fig. 8(b)] for G = 0 is qualitatively
correct for all θ∞ , 0. Figure 2 also shows that there exists a critical value Ĝc ' −12.85 such that
for Ĝ < Ĝc, ĥm and â are triple-valued functions of M̂ in some interval M̂1 ≤ M̂ ≤ M̂2 < 0, but are
single-valued elsewhere. In other words, when Ĝ < Ĝc there is a range of values of M̂ corresponding
to an appropriately cooled substrate in which there are three possible drop solutions with the same
volume. Examples of these three solutions in the case Ĝ = −30 and M̂ = −4 are shown in Figure 3.



By evaluating the streamfunction (7) we see that the three possible drop profiles have very different
flow patterns (see Figure 3). Figure 3(a) is typical of the case when there is one stagnation point. Here
the flow comprises a single closed eddy, with all particles circulating round the stagnation point. On
the other hand, the solution in Figure 3(b) has three stagnation points, namely a saddle stagnation
point between two “elliptic” stagnation points, all lying on the curve z = 2h/3. The streamlines are
closed curves, but the flow comprises two internal eddies which in turn are surrounded by circulating
fluid. The solution shown in Figure 3(c) also has one stagnation point, with one eddy. However, in
this case the flow is essentially confined to a region near the contact line x = a. This latter behaviour
is typical of solutions in the limit of strong cooling M → −∞ described earlier.

It is natural to question the stability of such drop profiles. A preliminary linear stability analysis
based on (18) suggests that solutions with negative gradient in Figure 2(a) (i.e. with dĥm/dM̂ < 0) are
always unstable (i.e. the solution shown in Figure 3(b) is unstable).

6 Conclusion

We re-visited the problem of the spreading of a thin two-dimensional drop of incompressible New-
tonian fluid on a uniformly heated or cooled horizontal substrate when thermocapillary effects are
significant. The work built on that by Ehrhard and Davis [2] who derived the non-linear partial differ-
ential equation governing the free-surface profile of the drop. By adapting the method of Holland et
al. [3] we obtained the (implicit) exact solution of the two-dimensional equation in the limit of quasi-
steady motion. We then considered the behaviour of the solution in various asymptotic limits which
confirmed and extended some results of Ehrhard and Davis [2]. We showed that multiple solutions are
possible for the case of a pendent drop on an appropriately cooled substrate; the three solutions were
shown to be qualitatively different in both shape and flow pattern.
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