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Abstract

We present a simple mathematical model for the fluid flow in the curtain coat-
ing process, exploiting the small aspect ratio, and examine the model in the large-
Reynolds-number limit of industrial interest. We show that the fluid is in free fall
except for a region close to the substrate, but find that the model can not describe
the turning of the curtain onto the substrate. We find that the inclusion of a viscous
bending moment close to the substrate allows the curtain to “turn the corner”.

1 The industrial method of curtain coating

Curtain coating is an industrial process, traditionally used to coat photographic film, which
is now beginning to be used by the paper industry. A reservoir of coating mix, typically
an aqueous solution containing 20-50% solids and surfactants, is formed into a curtain of
fluid using either a slot or a slide as shown in Figure 1. This curtain falls under gravity
until it hits the substrate or “web” to be coated, which is conveyed quickly underneath.
The coated substrate is passed through driers to evaporate off the water and thus the
finished paper is left with a, hopefully uniform, solid coating. The coater machines have
edge guides with water running in them to fix the width of the curtain as, without them,
the curtain is observed to “neck in” laterally. In the paper industry this technology is
run at much higher web speeds, and with fluids of very different rheologies, than in the
photographic industry.

1.1 Advantages and disadvantages of curtain coating

Methods currently used to coat paper include blade coating and air-knife coating, where
a thick layer of fluid is applied and scraped off to leave the desired thickness. This,
however, places a constraint on the speed of coating since, when operated at high speeds,

Figure 1: The slot and slide coaters.
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it subjects the substrate to a high shear, which can cause breakages. Curtain coating does
not produce this high shear, and so the substrate can be moved at higher speeds.

Other advantages of curtain coating over blade or air-knife coating include that a low
coat weight (i.e. a small quantity of solids) may be applied, which reduces costs, and that
contoured paper may be coated successfully, since the method lays down a uniform solid
coating.

However, curtain coating also has disadvantages when compared with blade or air-knife
coating. For example, it can be hard to form a stable curtain if, for instance, the flow
rate is too low; in this case the curtain can detach from the edge guides or break into
individual streams.

There are many problems inherent to the zone where the curtain meets the substrate
(the impingement zone). They include air entrainment, skip coating and the formation
of a heel. Air entrainment occurs when the substrate is moving too fast, whereupon the
fluid in the curtain does not wet the substrate properly and defects such as bubbles, pin
holes and streaks appear. If the substrate is moving much too fast then skip coating can
occur, where the mix “bounces” off the web. If the substrate is moving too slowly the
curtain can “bulge” out away from the direction of motion where it meets the substrate,
forming a heel. This also causes coating defects similar to air entrainment, and can cause
recirculation, and so degradation, of the mix. Details of these may be found in [1].

1.2 Previous mathematical models

One of the first papers written on the subject of curtain coating is by Brown [2]. This is
a mainly experimental introduction to the basic dynamics of a falling sheet, but includes
a mathematical appendix by GI Taylor deriving the equation of motion. Brown finds
empirically that the fluid is in ballistic free fall for the majority of the curtain.

A general literature survey on coating methods is given in [3]. This includes work on
more general aspects of coating, such as the flow of a thin film, the boundary layer along
a moving wall, as in the Sakiadis model [4], and the dynamic wetting line as well as areas
more closely related to curtain coating such as the stability of the curtain, the propagation
of waves in the fluid on the slide and the flow in the curtain.

Theoretical and experimental stability analyses have been performed, as in [5] and [2],
which find the curtain to be stable if any disturbances in the curtain are “swept away”
downstream before they have a chance to grow. This equates mathematically to the
condition that the Weber number (which represents a balance between inertia and surface
tension forces)

We =
ρqV

2γ
(1)

is greater than unity, where ρ is the density, q is the volumetric liquid flux, V is the local
fluid speed and γ is the surface tension.

2 A steady-state model of the curtain

We derive steady-state equations for the curtain using an arc-length-based coordinate
system. Since in all operating regimes the length of the curtain is much greater than
the thickness, we have a small aspect ratio ε = h0/l, where h0 is the slot width and l is
the (as yet unknown) length of the curtain. Hence, by analogy with the Trouton model
of extensional viscous flow [6], we may assume uniform flow across the thickness of the
curtain.
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Figure 2: The coordinates in the curtain.

2.1 Derivation of equations

We model the curtain in the simplest possible way, taking a cross section through the
plane normal to the substrate, far away from any edge effects and also assume the process
to be in a steady-state. Our coordinates are shown in Figure 2. We parametrise with
respect to arc-length ŝ along the centre-line of the curtain and take θ to be the angle,
measured upwards, that this line makes with the horizontal. We denote the thickness of
the curtain by ĥ, the velocity of the fluid along the centre-line by û, the tension due to
viscosity by T̂ and the a priori unknown length of the curtain by l. This gives us a free
boundary problem, similar to a contact problem in elasticity.

We build our model using conservation of mass and momentum. Assuming the fluid
in the curtain to be incompressible, conservation of mass immediately gives us

ĥû = q, (2)

where q is the constant volumetric flux supplied through the nozzle of the coater. With
ρ being the (assumed constant) density of the fluid and g being gravity, conservation of
momentum yields

d

dŝ

(

T̂

(

cos θ
sin θ

))

+ ρgĥ

(

0
−1

)

=
d

dŝ

(

ρĥû2

(

cos θ
sin θ

))

. (3)

Here the first term on the left hand side is the tension force, the second term is the gravity
force and the right hand side is the momentum flux. If we now dot with the tangent vector
(cos θ, sin θ)T , we have

T̂ ′ − ρqû′ = ρgĥ sin θ, (4)

representing conservation of tangential momentum, and dotting with the normal vector
(sin θ,− cos θ)T similarly gives us

(

T̂ − ρqû
)

θ′ = ρgĥ cos θ, (5)

representing conservation of normal momentum, where ′ ≡ d/dŝ.
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This gives us three equations (2), (4), (5) for the four unknowns θ, T̂ , û and ĥ, so we
need a further constitutive relationship to tell us about the properties of the fluid. In this
simplistic model, we assume that the fluid is Newtonian with constant viscosity µ, i.e.

T̂ = 4µĥû′, (6)

as in the Trouton model [6]. We note that other properties of the fluid such as surface
tension or viscoelasticity could be incorporated by modifying this constitutive relationship.

We now need to apply boundary conditions. Having prescribed the flux through the
coater nozzle our other boundary conditions are that at the contact point the fluid is
moving at the substrate speed, and that at the coater head we prescribe the velocity of
the fluid. The new unknown l in the problem is determined by the condition that the height
H of the coater above the substrate is known. These conditions equate mathematically to

θ = θ0 at ŝ = 0, (7)

û = U at ŝ = l, (8)

û = q/h0 at ŝ = 0, (9)
∫ l

0
sin θ dŝ = −H. (10)

Notice that we specify the angle θ at the top of the curtain but not at the substrate. We
will show below in Section 3 that a further term must be incorporated into (3) if we wish
to impose tangential contact between the curtain and the substrate. Note also that the
thickness of the coating on the substrate is given by

h1 = ĥ(l) =
q

U
. (11)

2.2 Nondimensionalisation

We now rearrange our equations and nondimensionalise using

ĥ = h0h, û = Uu, ŝ = ls, T̂ =
4µq

l
T

to give

uh = v, (12)

u′ = Tu, (13)

T ′ = Re Tu +
Re

Fr2
sin θ

u
, (14)

θ′ =
1

Fr2
cos θ

u
(

T
Re − u

) , (15)

where

Re =
ρUl

4µ
(16)

is the Reynolds number, which represents a balance between inertial and viscous effects,

Fr =
U√
gl

(17)

is the Froude number, which represents a balance between inertial and gravity effects, and

v =
q

Uh0
=

h1

h0
(18)
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is the draw ratio. Note here that we are nondimensionalising with the unknown value of
l and so finding Re and Fr is part of the problem: we will have to “back them out”. The
boundary conditions become

θ = θ0, u = v at s = 0, (19)

u = 1 at s = 1, (20)
∫ 1

0
sin θ ds = −H

l
. (21)

2.3 Immediate observations

We first note that once we have solved these equations to find θ(s) we can then solve
dx/ds = cos θ, dy/ds = sin θ to give the centre-line of the curtain in xy coordinates. Here
we have nondimensionalised x and y with l as we did with s. We are then easily able
to draw the shape of the curtain since the two free surfaces of the curtain are given by
(x ∓ εh sin θ/2, y ± εh cos θ/2).

By considering (13) and (14) we obtain the following constant of the motion

(T/Re − u) cos θ = constant = C, (22)

which is equivalent to a horizontal force balance. In particular, if θ = ±π/2 at any point
(e.g. in a slot coater) then θ ≡ ±π/2. Moreover if θ 6= ±π/2 initially, then it is impossible
for θ to cross ±π/2 at any point.

2.4 Solution in a typical operating regime

We have three dimensional parameters Re, Fr and v, and so we look for an asymptotic
limit. Typical operating parameters could be Re ≈ 1000–10000 and Fr ≈ 10, so we take
the asymptotic limit Re � 1 with Fr = O(1).

We take the simplest case θ0 = −π/2 so that the curtain exits the slot vertically, and
solve (13)-(15) in the limit Re → ∞ with condition (19) to find

T =
1

Fr2u
, u =

√

2s/Fr2 + v, θ = −π

2
. (23)

This is precisely a ballistic free fall velocity and we notice that, in this limit, the substrate
has no effect on the flow in the curtain. However, the solution (23) does not satisfy the
boundary condition u(1) = 1, so we look for a boundary layer near s = 1 across which the
velocity adjusts. We find we must rescale T and s such that T = Re T̄ , and s = 1 + s̄/Re
to give

Re u′ = Re T̄ u, (24)

Re2 T̄ ′ = Re2 T̄ u +
Re

Fr2
sin θ

u
, (25)

Re θ′ =
1

Fr2
cos θ

u
(

T̄ − u
) . (26)

Taking the limit Re → ∞ we see that θ′ = 0 and, since we require θ → −π/2 as s̄ → −∞
to match with the flow outside the boundary layer, we must have

θ ≡ −π

2
, (27)

that is the curtain can never turn around onto the substrate in this one-dimensional model.
The remaining equations in this limit are

T̄ ′ = T̄ u, (28)

u′ = T̄ u, (29)
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with boundary and matching conditions

u = 1 on s̄ = 0, (30)

u → u∗, T̄ → 0 as s̄ → −∞, (31)

where

u∗ =
√

2/Fr + v2, (32)

is the impingement speed into the boundary layer. Now, we notice from equations (28)
and (29) that T̄ − u = const = −u∗, using (31). Thus we can reduce (28) and (29) to

u′ = (u − u∗)u, (33)

and integrate to give the solution

u =
u∗

1 + (u∗ − 1) eu∗s̄
, (34)

T̄ =
u∗ (1 − u∗) eu∗s̄

1 + (u∗ − 1) eu∗s̄
. (35)

If we now find a composite expansion of the outer and inner solutions, so that we represent
the solutions in both regions in one expression, this gives us

u =

√

2s/Fr2 + v2 +
u∗

1 + eu∗Re(s−1) (u∗ − 1)
− u∗, (36)

T =
1

Fr2
√

2s/Fr2 + v2
+ Re

u∗ (1 − u∗) eu∗Re(s−1)

1 + eu∗Re(s−1) (u∗ − 1)
. (37)

We plot these solutions using Re = 1000, Fr = 10 and v = 0.6 in Figure 3. We see that
the velocity increases slowly until it reaches the boundary near s = 1 where it increases
sharply to the substrate speed. We also see that the tension is virtually zero and decreasing
until the boundary layer is reached where it too increases sharply as the substrate exerts
influence.
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Figure 3: The composite expansions (36) and (37) for u and T , taking Re = 1000, Fr = 10
and v = 0.6 in both.
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3 Including a bending moment

In Section 2 we showed that our model does not allow the curtain to “turn the corner”
onto the substrate in the inertia-dominated case. Physically, however, it is clear that the
curtain does turn onto the substrate, and thus our model must be over-simplified. We
now include a bending moment term which, we will see, allows the corner to be turned.

Like an elastic solid, a bending moment exists in a fluid due to the transverse and
longitudinal forces acting upon it. This bending moment is always present, but is often so
small as to be negligible. We will investigate whether this bending moment is important
in the process of curtain coating.

3.1 Derivation of equations

F̂y

δŝ

θ

ĥ

ŝ

ŝ + δŝ
M̂(ŝ)

ρgĥ

F̂x

F̂x

F̂y

M̂(ŝ + δŝ)

Figure 4: The forces on a small segment of the curtain.

We consider the situation shown in Figure 4, where we take F̂x and F̂y to be the
horizontal and vertical forces acting on the curtain (so we have T̂ = F̂x cos θ + F̂y sin θ)
and M̂ to be the bending moment. Conservation of mass and momentum then give

ûĥ = q, (38)

F̂ ′
x = (ρqû cos θ)′, (39)

F̂ ′
y =

ρgq

û
+ (ρqû sin θ)′, (40)

and a balance of moments gives

M̂ ′ = F̂x sin θ − F̂y cos θ, (41)

where ′ ≡ d/dŝ. We also have

F̂x cos θ + F̂y sin θ = 4µĥû′, (42)
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from the constitutive relationship, and, for a Newtonian viscous fluid,

M̂ = − ĥ3

3

d

dt

(

µθ′
)

(43)

= −µûĥ3

3
θ′′, (44)

assuming steady-state. Details on the derivation of (43) can be found in [7].
These equations add an extra derivative in θ which means we may now prescribe θ at

both the coater nozzle and the contact point on the substrate.

3.2 Nondimensionalisation

We replace ĥ with q/û and nondimensionalise using

û = Uu, ŝ = ls, F̂x,y =
4µq

l
Fx,y, M̂ =

(

ρ2µq5
)1/3

M.

This gives us,

(Fx − Re u cos θ)′ = 0, (45)

(Fy − Re u sin θ)′ =
Re

Fr2u
, (46)

M = − δ2

3u2
θ′′, (47)

Fx sin θ − Fy cos θ = δRe M ′, (48)

Fx cos θ + Fy sin θ =
u′

u
. (49)

where Re and Fr are given by (16) and (17) and

δ =

(

µq2/ρ
)1/3

lU
. (50)

measures the importance of the bending moment. Note that, by letting δ → 0, after some
manipulation we obtain our original equations neglecting the bending moment, as found
in section 2. It is also helpful to define

α = δ Re =
1

4

(

ρq

µ

)2/3

. (51)

3.3 Solution in a typical operating regime

We now have four parameters Re, Fr, δ and v, and so we again look for an asymptotic
limit. Typical operating conditions could be such that Re ≈ 1000–10000, Fr ≈ 10 and α is
an order one constant, and so we solve this system in the limit δ � 1, so that Re/α � 1,
and Fr = O(1). Note here that α being order one means that the boundary layers in u and
θ are of the same order. We again take θ0 = −π/2 for simplicity and solve the equations
to find (as Re → ∞)

Fx = M = 0, (52)

θ = −π

2
, (53)

u =

√

2s/Fr2 + v2, (54)

Fy = − 1

Fr2
(

2s/Fr2 + v2
) , (55)

8



as before. However, this again does not satisfy the boundary conditions at the contact
point on the substrate. Therefore we look for a boundary layer near here by rescaling
s = 1 + δs̄, Fx,y = Re F̄x,y to give

(F̄x − u cos θ)′ = 0, (56)

(F̄y − u sin θ)′

δ
=

1

Fr2u
, (57)

M = − θ′′

3u2
, (58)

F̄x sin θ − F̄y cos θ = M ′, (59)

Re
(

F̄x cos θ + F̄y sin θ
)

=
1

δ

u′

u
. (60)

Letting Re δ = α = O(1) and δ → 0 we find

F̄x = u cos θ, (61)

F̄y = u sin θ + u∗, (62)

M ′ = −u∗ cos θ, (63)

θ′′ = −3u2M, (64)

1

α

u′

u
= u + u∗ sin θ. (65)

where u∗ = u(1) is again the impingement speed into the boundary layer. We let N = θ′

so that

N ′ = −3Mu2, (66)

which reduces the problem to a system of first order ordinary differential equations, and
the equations for F̄x and F̄y decouple. We rescale u = u∗ũ, N = u∗Ñ , s̄ = s̃/u∗ to remove
u∗ from the problem, to give

M ′ = − cos θ, (67)

ũ′

αũ
= ũ + sin θ, (68)

θ′ = Ñ , (69)

Ñ ′ = −3Mu2. (70)

Finally, to match with the solution far away from the boundary layer we require

θ → −π/2, ũ → 1, M → 0, Ñ → 0 as s̃ → −∞. (71)

We linearise about these to find

ũ = 1 + Deαs̃, (72)

θ = −π

2
+ Ae31/3s̃ + Be(−1/2+i

√
3/2)31/3s̃ + Ce(−1/2−i

√
3/2)31/3s̃. (73)

where, to prevent exponentially growing solutions as s̃ → −∞, we must have B = 0 = C.
The translational invariance of the problem allows us to set D = ±1 (depending on whether
u∗ is greater than, or less than, 1). This leaves us with the shooting conditions

ũ ∼ 1 ± eαs̃, (74)

θ ∼ −π

2
+ Ae31/3s̃, (75)

Ñ ∼ A 31/3e31/3s̃, (76)

M ∼ − A

31/3
e31/3s̃, (77)
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Figure 5: The shape and speed of the fluid in the boundary layer taking A = 1, α = 1 and
D = 1 so that u∗ < 1. This gives an initial velocity of 1.8ms−1 and a final x deflection of
X = 1.77 × 10−4m.

0.2 0.4 0.6 0.8 1

5

10

15

y

x

-20 -15 -10 -5

0.75

0.8

0.85

0.9

0.95

s̃

u

Figure 6: The shape and speed of the velocity in the boundary layer taking A = 2, α = 1
and D = −1 so that u∗ > 1. This gives an initial velocity of 11ms−1 and a final x deflection
of X = 4.3 × 10−3m.

as s̃ → −∞. For each value of A we shoot until we find s̃0 such that θ(s̃0) = 0, and then
back out u∗ using ũ(s̃0) = 1/u∗.

Typical curtain shapes and velocities are shown in Figures 5 and 6 for u∗ < 1 and u∗ > 1
respectively. We note that the curtain shapes are qualitatively the same for the two cases,
in particular, θ increases monotonically from −π/2 to 0 in either case. However, when the
web speed exceeds the impingement speed (i.e. u∗ < 1), u is monotonically increasing,
whilst for u∗ > 1, u decreases before increasing to the final web speed.

Since the curtain falls vertically until it reaches a thin boundary layer at the bottom
we may approximate the length of the curtain by the height, which is prescribed. Thus,
given the impingement speed into the boundary layer u∗, we may back out the dimensional
initial velocity v̂ using

u∗ = U
√

2gH + v̂2. (78)

The deflection of the curtain is given by the value of x at the contact point; when we
rescale and return to dimensional variables we find the actual deflection X is given by

X =

(

µq2/ρ
)1/3

√

2gH + v̂2
x(s̃0). (79)
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√

2gH + v̄2/U .

By varying the shooting parameter A, we may thus plot the solution space for a given
value of α. In Figure 7, we plot the ratio of the impingement and web velocities against
the rescaled horizontal deflection. This shows that solutions exist for all values of the
velocity ratio: perhaps surprisingly there is no significant change in behaviour as the ratio
passes through unity. As expected, the deflection increases as the web speed does.

4 Conclusions

In section 2, we derived a basic model for steady-state flow in a liquid curtain, and solved
it in the inertia-dominated regime of industrial interest. We found that the model only
allows θ to be specified at one end of the curtain. By analysing the characteristics of
the unsteady version of the model, one may show that θ must be specified at the top if
T − ρhu2 < 0 or at the bottom if T − ρhu2 > 0. The former case always holds for inertia
dominated curtains, whilst the latter applies to viscous-dominated liquid sheets.

Our simple model therefore does not describe the curtain “turning the corner” to
make contact with the moving web. In section 3 we showed the incorporation of a bending
moment term leads to a model that allows θ to be specified at both ends of the curtain.
The bending moment is negligible except in a boundary layer near the substrate where θ
varies rapidly. The lengthscale of this region is of order

δl =
1

U

(

µq2

ρ

)1/3

=

(

µ

ρq

)1/3

h1, (80)

where, recall, h1 is the thickness of the coating. Typical industrial parameters may be
used to predict that δl ≈ 7 × 10−5m. This is smaller than preliminary experimental obser-
vations would suggest, since the “turnover” region is visible to the naked eye. We suspect
that our assumption of a simple Newtonian rheology is responsible for this disparity. By

11



modifying (42), (43) to incorporate viscoelastic effects we hope to obtain a more realistic
lengthscale.

The aspect ratio of the turnover region is given by

h1

δl
=

(

ρq

µ

)1/3

= (Re∗)1/3 , (81)

where

Re∗ =
ρUh1

µ
=

ρq

µ
(82)

is the Reynolds number based upon the curtain thickness (rather than the curtain length l).
By applying a quasi-one-dimensional model, we have therefore assumed implicitly that
Re∗ is small. Otherwise the flow in this region becomes fully two-dimensional; previous
numerical studies [1] have shown that a heel forms when Re∗ is significantly greater than 1.

Since Re∗ = (4α)3/2, it is formally inconsistent to treat α as order one while using a one-
dimensional approximation. Nevertheless, we expect our boundary layer model to give
qualitatively correct results provided reasonably small values of α are used.

We have found that our model admits steady solutions for all values of the ratio u∗

between the impingement and web velocities. We are currently investigating the linear
stability. One might expect, for example, the curtain to lose stability if the impingement
velocity is significantly greater than the web velocity (i.e. u∗ > 1). We may be able to
associate a loss of stability in the turnover region with industrially-observed defects such
as air entrainment. Alternatively, it may be necessary to incorporate aerodynamic forces
on the curtain, which we also aim to examine in future studies.
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