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We consider a situation where a thin liquid film is driven from a reservoir up a substrate by a thermally
induced Marangoni shear stress and investigate the meniscus that connects the film with the reservoir, as
well as the wave dynamics near the contact-line. We identify two types of meniscus solutions, and show,
via a phase space investigation of the third order ODE that governs the profile, when these solutions
appear.  The first  type fixes  the film thickness,  hence  the flow rate,  and exists only below a critical
inclination angle (measured with respect to the vertical position). The second yields thicker films and
does  not  meter  the  flow.  The  rich  wave  dynamics  near  the  contact-line  involve  non-classical
(undercompressive)  shocks  and  have  themselves  been  the  focus of  intensive investigations  in  recent
years.  We summarise these results to demonstrate  how the interplay of  meniscus solutions and front
dynamics determines the profile of the liquid surface. The discussion of the meniscus solutions carries
over to the drag-out problem, for which in particular the dependence on the inclination angle has, to the
best of our knowledge, not yet been systematically investigated.

1 Introduction

When a temperature difference is imposed along a substrate which has one end immersed into a
reservoir of a liquid such as silicone oil, surface tension gradients can impose shear stresses
which drag liquid up from the reservoir. This motion is opposed by gravitational forces acting
to return liquid to the reservoir. Such a situation can arise in industrially important processes
such as Marangoni drying [1] and microfluidic operations [2]. Experiments investigating this
situation have been performed by Carles and Cazabat [3] for a vertical substrate and for tilted
substrates [4, 5].

If  σ denotes  the surface  tension of the coating,  and  x is  a coordinate  which increases  with
distance above the undisturbed level of the reservoir, then the surface shear stress driving the
flow is τ = dσ/dx = (dσ/dT)(dT/dx). For a liquid with dσ/dT < 0, holding the upper end of the
substrate at a lower temperature than at the meniscus ensures that  τ > 0. In this work,  τ is
assumed to be a positive constant along the entire substrate. A related situation, known as the
withdrawal or “drag-out” problem, arises when the upward force is provided by dragging the
substrate upward parallel to itself [6, 7]. The withdrawal situation displays some of the same
features as seen here.

In this paper a model for Marangoni-driven flow of a thin film over a substrate with significant
inclination  is  presented.  In  Section  3  we  review  recent  results  [8]  describing  meniscus
solutions, that is, film profiles which satisfy the model in the meniscus and approach a layer of
constant thickness above the meniscus. In the following section we examine the coating profile
near  its  advancing  front,  based  on  a  precursor  model.  The  two  independent  pictures  are
combined in Sections 5 and 6 to give a coherent  picture  of film behaviour  as the substrate
inclination and precursor thickness are altered.

2 Lubrication model

Here we consider flow on a planar, tilted substrate, as shown in Figure 1. We denote the time-
dependent film thickness profile by h(x,t), where x measures distance up the substrate and t is
time. The substrate is tilted at an angle α from the vertical. The (mean) surface tension of the



coating is σ, while its density ρ and viscosity μ are assumed to remain constant. Using familiar
ideas  from  lubrication  theory,  an  evolution  equation  governing  h(x,t) may  be  obtained  by
exploiting  the  disparity  between  the  thickness  and  substrate  length  scales  [9].  We  scale
quantities in the thickness and substrate directions, and time, using

H= 3 τ
2 ρg cosα

, L= 3στ

2 ρ2 g2 cos2 α 
1/3

, t0=2 μ 4 σρg cosα

9 τ5 
1/3

respectively. The resulting dimensionless governing equation is

htx h2−h3 x=−h3 κ x x +D h3 hx x (1)

where  κ=hxx 1ε2 hx 
−3/2

is the free surface curvature, and ε=H/L. Here the dimensionless

parameter D is defined by [10]

D= 3 δ

cos2 α 
2 /3

sin α , where δ= τ
2σρg

.

Large values of  D indicate that the normal component of gravity is important,  and arise for
large inclinations. The function  Ω(x) is a dimensionless temperature profile which increases
uniformly along the substrate (Ωx = 1) except  near the heaters,  where  Ω becomes constant,
cutting off surface tension gradients there. Because of the relatively large tilt of the substrate,
both the normal and tangential components of gravity are important, and these are retained in
the equation above.

At the meniscus, the film is required to flatten so as to meet the undisturbed reservoir, so that in
dimensionless units, h → –x/D as x → –∞. We are interested in the development of films on a
notionally “clean” substrate, and suppose that initially a film of uniform very small thickness b
covers  the  substrate.  At  the  apparent  contact  line,  we  use  a  precursor  model  to  avoid  the
singularity associated with a moving contact line [11] and require that h → b as x → ∞.

For  substrates  sufficiently  tilted  away  from the  vertical,  ε  is  much  less  than  1.  It  is  then
appropriate to replace κ by the approximate expression hxx in the thin film region away from the
reservoir.  When  in  addition  ε≪D ,  it  follows  that  ε∣hx∣≪1  in  the  reservoir  ,  and  the
approximate expression for curvature may also be used there. The latter condition is satisfied
when tan α≫1 . We set x≡1 , requiring that as α is increased the position of the heater is
moved  further  into  the  reservoir.  In  this  way  a  uniform  temperature  gradient,  and  hence
uniform shear stress, is imposed. Equation (1) then reduces to:

Figure 1: Thin film on a heated tilted substrate rising from a meniscus.



hth2−h3 x=−h3 hxxx xD h3 hx x (2)

A model equation very similar to (2), with h2 replaced by h in the flux term on the left, can be
derived for the withdrawal problem. We are concerned with the behaviour of solutions of (2)
subject to the boundary conditions above. This model is influenced by just two parameters, D,
and the precursor layer thickness,  b. A particular combination of these parameters determines
the structure of the climbing film.

Solutions of  (2)  typically  have two distinct  parts,  a meniscus and a moving wave structure
consisting of one or more advancing waves. Near the reservoir, the meniscus part settles into an
equilibrium  solution  with  thickness  approaching  some  constant  value  hm.  At  the  apparent
contact line is an advancing travelling wave which we refer to as the “advancing front”. Behind
it may be additional waves, which together with the advancing front make up the moving wave
structure.  A good guide to the behaviour of the complete film comes from examining what
happens considering the two parts of the film independently. We do this in the following two
sections, then describe the possible structures for the entire film.

3 Meniscus

In previous work [8] we examined how coating profiles near the meniscus can be matched to a
flat region of thickness  hm, and we summarise our results here. Two distinct types of profiles
were  found  by  considering  the  third-order  ordinary  differential  equation  (ODE)  describing
stationary solutions of (2).  For a given  D somewhat smaller than  DM ≈ 0.8008, a stationary
meniscus solution can be found for which hm < 2/3, for one special value of hm = hB(D). For the
same value of D, meniscus solutions can also be found with hm ≥ hT(D), where hT is the larger
positive root of  f(h) =  f(hB), and  hT > 2/3. We denote the solution with  hm =  hB as a Type I
meniscus solution. These have a thickness profile which monotonically decreases with x. When
the  film  has  hm ≥ hT,  we  call  this  a  Type  II  solution.  Type  II  solutions  typically  have  a
depression or dimple in the meniscus region, and their thickness approaches  hm by a damped
oscillation,  associated  with  a  complex  conjugate  pair  of  eigenvalues  in  the  characteristic
equation of the  ODE (for  D < 0.6964).  These are shown in Figure  2. A somewhat similar
situation arises in the withdrawal problem, where for rising film flows, a layer of thickness
increasing with capillary number can be produced, while falling films with the same flux are
thicker, and have oscillating profiles [12].

For hm = hT(D), our earlier analysis shows that there are an infinite number of steady solutions.
Similarly, for hm in an range of values near but not equal to hT(D), there are a finite number of
multiple solutions. Our numerical simulations suggest that every second one of these solutions
is stable to in-plane disturbances. (We do not discuss these further here; they are considered in
an upcoming paper [13].)

The pair of values  hB and hT both become closer to 2/3 as  D approaches  DM. For  D > DM, no
Type I meniscus profiles exist, and a steady meniscus profile can be found for any  hm > 2/3.
Plotting  hB and  hT against  D forms  a  structure,  shown in Fig.  3(a),  we call  the  “meniscus
wedge”. The shape of the meniscus wedge does not, of course, depend on properties of the
contact region, such as b.

4 Moving wave structure

The advancing front  has been quite widely studied. Münch presented a family of travelling
wave  profiles  for  the  advancing  front,  obtained  as  D is  varied.  [14].  These  profiles  have
thickness approaching a constant left state value hw away from the contact line, and have h→b
as  x→∞. They  included compressive  (Lax)  waves  and double  wave structures  [4, 10].  The
compressive  waves  have  a  characteristic  capillary  ridge  connecting  the  left  state  to  the
precursor layer. One double wave structure (a “double shock structure”) consists of a leading
wave, which is undercompressive and has a left state huc and right state b, and a trailing wave
which is compressive, with left state hw<huc and right state huc. Another double wave structure



(a “rarefaction fan-undercompressive front combination”) is formed by the combination of a
rarefaction wave, in which the film thickness smoothly decreases from  hw>huc until reaching
huc, and an undercompressive leading wave. In this structure, the two waves are separated by a
plateau of thickness huc which depends on both b and D. They both have a positive speed, and
so move up the substrate over time.  However, the undercompressive wave moves faster than
the compressive wave of the rarefaction fan, and so the width of the plateau grows over time.

These results may be summarised in a two-dimensional “front wedge” diagram that displays,
for each D, the values of hw where the different types of wave or waves connecting this state to
the  precursor  right  state  exist.  In  the  (D,  hw)  plane,  the  boundaries  between these  different
regions form a wedge-like shape, shown in Figure 3(b) for the precursor thickness  b=0.005.
This shape is defined by hw=huc(D,b) (at the upper edge) and hw = 1 – huc –b (lower edge).

The two sides of the wedge, together with the extension of the wedge's apex {(D, h): D>DF, h=
(1–b)/2} and the line {(D, h): D=DF, h>(1–b)/2}, divide the plane into four regions. The region
in which a (D,  hw) pair lies in the diagram  indicates which wave structure will arise for this
combination.  For relatively small values of  hw, a simple compressive wave, with a capillary
ridge,  arises.  Within the  wedge,  the  compressive-under-compressive  double  shock  structure
described  above  occurs.  For  large  values  of  hw,  one  obtains  double  wave  structures  with
rarefaction fans. These are a rarefaction fan-undercompressive front combination when D<DF

Figure 2: Meniscus structures for D=0.322. Red line is a Type I meniscus; those
labelled 'a' to 'd' are Type II menisci.

Figure 3: (a) Meniscus wedge. (b) Front wedge diagram for b=0.005.



and  hw>huc.  To the right of the apex (D>DF) are found solutions with a rarefaction fan and
leading generalised Lax shock.

The shape and position of the front wedge on a (D,  hw) diagram changes with  b, because  huc

depends on b. The apex of the wedge (F in the figure) is located at (DF(b), (1–b)/2), and moves
to smaller D as b increases.

5 Combined behaviour

The question  arises  is  now:  how can  the  above  information  about  the  meniscus  and  front
structures  be  combined?  When  the  coating  has  had  sufficient  time  to  develop,  so  that  the
contact  line is  far  from the reservoir,  the meniscus  profile  may approach an approximately
steady state. In this case, the film thickness above the meniscus approaches a suitable  hm for
which a Type I or Type II meniscus exists, and this thickness is the left state value hw used to
determine the front structure.

An  overview  of  the  possible  combinations  of  the  different  types  of  meniscus  and  wave
structures  can be obtained by superimposing the  two wedge  diagrams.  In  many cases,  this
suggests more than one possible outcome for a given  D and  b. For example, if  D<DM, wave
structures can be found to connect to either a Type I or a whole range of Type II menisci. By
using dynamic considerations, we can in many cases determine which film profile evolves from
monotone initial data such as

h  x ,0 ={D−3/2 exp  D1/2 x −D1/2 x−1 b for x≤0,
b for x0,

(3)

representing a uniform thin precursor layer on a substrate which is partially immersed into the
reservoir, where the meniscus is free of surface tension gradients. These predictions are verified
using simulations of the time-dependent PDE (2).

5.1 Thin precursor layer

The most important parameter range is for small b, i.e., a very thin precursor layer. In this case,
DF is large. The upper branch of the front wedge makes intersections with the curve hT(D) and
the line h = 2/3, as seen in Figure 4, for b = 0.005. This arrangement of the wedges continues
until huc(DM,b) = 2/3; this happens for b ≈ 0.0202.

When D is small, but still large enough that hB > b, the film meniscus must be of Type I. This
continues until D=DI where the lower sides of the two wedges intersect in the (D, h) diagram.
For, suppose the meniscus were of Type II, with a right state thickness hm ≥ hT. In this range of
D,  hT in  turn  is  larger  than  huc.  A  connection  from  hm to  the  precursor  would  involve  a
rarefaction  fan  followed  by  an  undercompressive  wave  joining  to  b.  The  left  part  of  the
rarefaction  fan  would  then  have  negative  speed,  and  therefore  would  fall  back  into  the
meniscus. Hence such a solution cannot persist.

On the other hand, if  the meniscus is of Type I,  then  hm =  hB < 1 –  huc –  b,  and a simple
compressive  connection  to  the  precursor  is  possible.  This  is  connected  by  a  flat  film to  a
steadily  advancing  front.  The  left  state  of  the  advancing  front  and  the  right  state  of  the
meniscus are identical in this case, since the two are directly connected. Dynamical simulations
for D = 0.1021 < DI and b=0.005 (Example 1 of Ref. [8], also shown in Fig. 5(a)) confirm that
this combination of Type I meniscus and a simple compressive wave occurs. The flat region
thickness is metered by the meniscus in this case, in the sense that it is determined by D, and
independent of b.

When D exceeds DI, the Type I meniscus thickness  hB(D) > 1 – huc –  b. In place of a simple
compressive connection, a Type I meniscus must now connect to a double shock structure. As



in the previous case, a Type II meniscus is still not possible, as hT > huc while D < DII. Now the
left state of the advancing front is the undercompressive wave height huc. The flat region ahead
of the meniscus, with thickness hB, is connected to huc by the trailing compressive part of the
double  wave  structure.  This  trailing  shock  moves  upwards,  but  somewhat  slower  than  the
advancing front. In the (D, h) diagram, Figure 4, the graph of hB(D) enters the front wedge, and
the shaded line jumps to huc at D = DI, separating from the line portion emphasised by crosses.
(In this discussion we omit a complication arising from the existence of multiple compressive
waves or a double shock being possible at the same (small) value of D, when h is slightly larger
than 1 – huc – b [14]. For monotone initial conditions such as (3), the effect of this is to slightly
shift the transition from compressive fronts to double shocks to a value D′I slightly greater than
DI.) Double shock structures continue to develop until  D = DII, the value of  D where huc = hT

and  the  upper  sides  of  the  two  wedges  cross.  For  b=0.005,  DII =  0.535.  A double  shock
structure moving up the substrate is shown for D=0.322 in Example 2 of Ref. [8], and also in
Fig. 5(b).

Figure 5: Numerical solutions for increasing values of D. From left to right, (a) D=0.0121, (b)
D=0.3220 and (c) D=0.6424, with b=0.005 in each case.

Figure 4: A (D, h) diagram showing the front wedge for b=0.005 (blue) and the
meniscus wedge (red).



For  DII <  D <  DIII, huc is larger than hT and so it lies in the region where Type II meniscus
solutions  are  possible.  Hence  a  direct  undercompressive  shock  connection  from a  Type  II
meniscus to the precursor is possible. (The existence of multiple Type II solutions for h near hT

means that  one or  more  Type II  solution  is  also  available  for  matching  to huc via a  direct
connection for values of D slightly below DII.) These continue until D = DIII, defined by where
huc = 2/3; for  b=0.005,  DIII = 2.025. For  D < DIII, huc is larger than 2/3. Thus we can rule out
connections  involving intermediate  waves  as follows.  Only  shocks  can connect  to huc from
below, and these would have a negative speed. (Characteristics for the left and right state would
cross,  ruling  out  a  rarefaction  fan).  Similarly,  any  wave  connection  from above  must  be  a
rarefaction fan, all parts of which would also have a negative speed.

As a result, the only structure possible is a Type II meniscus connecting directly to a flat state
with thickness huc. This flat state is the left state of an undercompressive shock connection to
the precursor. The right state of the meniscus and the left state of the advancing front are again
identical, and in Fig. 4 the lines marked by crosses and shading coincide. It is notable that in
this range of D, the thickness of the flat region, huc, is determined by the precursor thickness,
not by the meniscus. We therefore refer to these structures as “front controlled”. This situation
in this range is exactly what is observed for Example 3 from Ref. [8], and in Fig. 5(c), where
D=0.6424. (Once again, this description has to be qualified slightly, due to the existence of
Type II menisci somewhat below hT [8]. This complicates the transition from Type I to Type II
meniscus around D = DII.)

For  the  small  values  of  D considered  so  far,  our  “separation  assumption”  is  justified  a
posteriori, as dynamical simulations confirm that there is in fact a distinct flat region between
the meniscus and the wave structure. For larger D, this is not so. As D increases beyond DIII,
the height of the left state for an undercompressive front huc drops below h=2/3. Now there can
be no direct connection between meniscus and front. All available meniscus profiles have hm

larger than huc, so an intermediate wave is needed to span the thickness gap. From the front
wedge part  in  Figure  3(b),  we see  that  the  resulting  wave  structure  must  be  a  rarefaction-
undercompressive wave combination.

No flat film can emerge between the meniscus and the rarefaction wave with a thickness hm=hw

strictly larger than 2/3, since the portions of the rarefaction wave larger than 2/3 would have a
negative characteristic  speed.  Instead the  meniscus evolves into a shape that  is the limiting
profile of all the Type II menisci, while the portions of the film between 2/3 and huc tend to the
profile of rarefaction wave with left state 2/3. Since the characteristic speed at h=2/3 is exactly
zero,  the  rarefaction  wave  never  completely  separates  from  the  meniscus,  but  as  it  gets
increasingly stretched,  the film thickness  at  a  any fixed position  x in front  of the meniscus
eventually tends to 2/3. We call the emerging limiting meniscus profile with thickness hm=2/3 a
generalised Type II meniscus, in analogy to the terminology for Lax waves.

This situation is indicated in Figure 4, where for  D >  DIII, the crossed and shaded lines part
again. The former line lies at the boundary of the Type II regime, while the latter follows the

Figure 6: For large D and b=0.005 a Type I meniscus connects to the advancing
front via a rarefaction fan. (a) D=3.5. (b) D=6.



upper edge of the front wedge. Dynamical simulations with D=3.5 confirm our picture (Figure
6(a)).  At  long  times,  the  film  to  the  left  of  the  advancing  front  forms  a  flat  plateau  with
thickness equal to huc = 0.5783. (This value was obtained by solving the travelling wave ODE a
[10, 14]). At an increasing distance from the advancing front, the film profile steepens slightly
to a rarefaction wave, which blends over into the meniscus.

When  D increases  further, huc decreases,  and  the  difference  between  the  speed  of  the
undercompressive  wave and the left  characteristic  speed  of this  wave also decreases.  They
become equal when D = DF and huc = (1–b)/2 at the apex of the front wedge. For b=0.005, DF =
5.227.  For  the  largest  D,  in  excess  of  DF,  the  possible  wave  structures  are  those  that  are
permitted according to classical shock theory. 

Again, the meniscus profile tends to a generalised Type II meniscus, and it must connect to a
rarefaction fan with left state 2/3. The rarefaction wave now connects directly to the advancing
front, which connects in turn to b. The characteristic speed of the thickness (1–b)/2 where the
two  structures  connect  is  identical  to  the  shock  speed.  The  leading  shock  is  therefore  a
(compressive) generalised Lax wave, and there is neither the flat region of thickness huc nor the
steep shock front which were visible when D=3.5. This is seen in a dynamical simulation for
D=6 in Figure 6(b). Instead the rarefaction fan expands over time, always stretching from the
meniscus to the advancing front.  The front is a generalised Lax shock,  and connects  to the
rarefaction fan via a rounded corner at thickness h=(1–b)/2 = 0.4975. Also shown in the figure
us the generalised Type II meniscus profile approached when the front has moved far up the
plate.

5.2 Thicker precursors

As b is increased, the front wedge shrinks, and overlaps with the meniscus wedge in different
arrangements, altering the way in which the meniscus and front can interact. For b> 0.0202 the
upper branch of the front wedge intersects the lower branch of the meniscus wedge (so there
are D values for which hB =  huc) until  b > 0.2338. Within this range of D, it is possible for a
Type I meniscus to join to a double shock structure as in Section 5.1, or (via a rarefaction fan)
to an advancing undercompressive front. For still b larger than this value, the front wedge lies
entirely  within  the  meniscus  wedge,  and  undercompressive  fronts  are  no  longer  possible.
However we expect that such precursors are unlikely to be encountered in practice, and do not
discuss them in further detail here.

6 A catalogue of behaviours

Using the methods of Section 4, we can classify the behaviour expected for a large part of (D,
b) parameter space. The distinct behaviours seen are shown in Figure 7. Region boundaries are
found  by  computing  values  of  huc(D,b),  hB(D)  and  hT(D),  and  the  expected  behaviour  is
confirmed in each region by numerical simulations at multiple points.

Three types of solutions, having only a direct connection between the meniscus and advancing
front shock(s), only exist for small D or b. These include a Type I meniscus, connected by a flat
region of thickness hm = hB, joining either a Lax compressive front with a small capillary ridge
(denoted “T1+Lax” in Figure  7),  or a double  shock structure  (“T1+ds”).  The double shock
advances up the substrate over time, as shown in Figure 5(b). A Type II profile, with a flat
region thickness set by an advancing undercompressive front (“T2+uc”) is also possible. For a
fixed value of D, one of these separated configurations can only arise when a sufficiently thin
precursor is present.

For larger D and b the coating profile develops a rarefaction fan (shown as “rf” in the Figure 7
labels) and there is then no clear separation between the meniscus and the front. For the largest
D >  max(DF,  DM),  the  meniscus  is  of  generalised  Type  II,  and  the  advancing  front  is  a
generalised Lax wave (labelled “2/3+rf+gL”), or if DF < D < DM then the meniscus is of Type I



(“T1+rf+gL”). If the precursor layer is thin enough, the front is undercompressive (indicated as
“T1+rf+uc” and “2/3+rf+uc”).

7 Concluding remarks

This paper has presented a synthesis of knowledge of the film on a heated tilted substrate both
near  a  meniscus  and  at  an  advancing  front.  Combining  this  data,  and  confirming  with
dynamical simulations, we identified the possible behaviours for the entire film. Our results are
summarised in Figure 7, which shows the range of behaviours found for different choices of D
and b. We find that profiles with extended flat regions and with rarefaction fans are possible.

Our discussion has a few limitations: our restriction to small ε means the model here cannot
describe  substrates  which  are  nearly  vertical,  for  additional  curvature  terms  then  become
significant. In this limit hB is known to approach a finite non-zero value [3, 8, 9]. We have also
neglected some subtleties related to the existence of multiple Type II solutions for h near hT.

Our analysis for the thermally-driven coating is in the spirit of earlier work on the withdrawal
problem. The possibility of multiple values for the thickness of a fully-developed infinitely-
long flat region above the meniscus for certain inclination ranges was raised by Wilson [6] for
the withdrawal problem; here we find multiple solutions for the meniscus for D < DM. Hocking
[7] used the idea of matching meniscus and contact line solutions to show how conditions at the
contact  region  can  explain  Wilson's  difficulties  at  low  plate  inclination.  Below  a  certain
capillary number, which increases with contact angle, the coating thickness depends on contact
angle, with a transition region before the film meets the meniscus. Using a similar approach, we
find that  for  small  values  of  D,  a  theory neglecting the contact  line is applicable,  with the
contact region adapting to the thickness chosen by the meniscus, while for large D, the situation
is reversed. The smaller thickness expected for a steady meniscus,  hB is not observed; instead
the thickness hT is set by contact line conditions.

One significant difference from the withdrawal problem is that the flux function there, h – h3, is
not convex for positive h, while that of the present problem, h2 – h3 is convex for h < 1/3. Thus
in the withdrawal problem there can be no undercompressive shocks as are observed at the
fronts here [14].

We anticipate that the modelling here can be confirmed by experimental data. Typical values of
δ are small, less than 0.01 [5, 15] so obtaining large values of D is difficult. However the most
important transitions, from Type I, to double shock, to Type II, occur at only moderate D, and
so should be reasonably accessible.

Figure 7: Classification of film behaviour.
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