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Abstract 
 
This paper presents a model to predict the jet wiping performance of a gas jet at small standoff distances. 
The pressure gradient and shear stress distributions induced by a 2D slot jet impinging on a flat plate is 
determined both by experimental and numerical methods for normalized standoff distances L/d≤8. . 
Correlations for the wiping actuators are proposed. They are implemented into a zero-dimensional 
analytical model which allows the prediction of the final film thickness after wiping hf. The predicted 
values are compared with the data of wiping experiments conducted with water on a dedicated facility. 
An excellent agreement is obtained for jet Reynolds numbers lower than 4500.  The results show that the 
final coating thickness remains almost constant as long as the normalized standoff distance does not 
exceed 7. 
 
1 Introduction 
The deposition of a very thin liquid film over a solid surface is the basis of many industrial-
coating processes. After being deposited, the coating film solidifies, or dries out, leaving a 
protective layer for the substrate. This technique is used in hot-dip coating, in which the coating 
is a material in its liquid state, thus at very high temperature. The industrial requirements are 
such that the final coating thickness should be thin and uniform. For that purpose, the jet wiping 
technique allows the accurate control of the film thickness. It consists in a two-dimensional gas-
jet impinging on the liquid layer withdrawn by the moving substrate. The excess coating flows 
down back to the dipping bath. The final thickness of the liquid film depends on several 
parameters such as the standoff distance L between the wiping nozzle and the substrate, the 
nozzle slot opening d, the substrate velocity VP, the jet dynamic pressure Pn, and the physical 
properties of the fluid. 
There is a particular interest in working at small standoff distances: smaller thickness can be 
achieved, at higher line velocity. The wiping performance is controlled by the upstream 
maximum pressure gradient of the jet at impingement on the solid surface, ∇Pmax, and the 
maximum shear stress τmax

1-2, as sketched in Figure 1. They both augment with the nozzle 
pressure. An alternative solution is to choose a small distance L between the nozzle and the 
solid surface. However, the behaviour of the wiping actuators maxP∇  and τmax is not well known 
in this confined mode, i. e. for L/d≤8. In this range indeed, the potential core of the jet may be 
modified over a distance by the presence of the impingement surface, or even directly interact 
with it (in the case of very short L/d), resulting in a specific evolution of ∇Pmax and τmax. 
Therefore it is worthwhile providing a model for the evolution of the wiping actuators in this 
range. Despite a few attempts3-4 to characterize developing impinging jets, no effort has been 
spent so far to extract correlations for maxP∇  and τmax, and to validate them with the results of 
wiping experiments. 
 
The aim of this paper is to develop a simple predictive model of gas-jet wiping in the case of 
normalized standoff distances L/d≤8. The methodology adopted is threefold: the distribution of 
the pressure gradient ∇P and the shear stress τ induced by the jet on a flat fixed plate are 
measured and compared to numerical simulations. Correlations of the wiping actuators ∇Pmax 
and τmax are established and inserted in an analytical jet-wiping model to predict the final film 
thickness hf. The findings are then compared to the experimental data obtained on a dedicated 
facility. 
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Figure 1: Sketch of the jet configuration: (a) Nozzle placement; (b) Typical impingement 

pressure profile; (c) Typical shear stress profile 
 
2 Numerical simulations 
Numerical simulations of the impinging gas jet on a flat plate are performed with the code 
Fluent 6.0. The simulations parameters are given and typical results are shown. 

 
2.1 Mesh and boundary conditions 
The computational domain is shown in Figure 2a. It is symmetrical and two-dimensional. The 
experimental conditions are simulated. The nozzle has an external angle equal to 50°, and three 
slot gaps are considered; d=0.7 mm, 1.4 mm and 2 mm. The width of the domain is 100 mm, 
which corresponds to x/d=50. The normalized standoff distance between the nozzle and the 
plate may vary from 2 to 8. A typical mesh layout is shown in Figure 2b. It is composed of 
hybrid non-structured elements, quadrilaterals in the near-wall region, and triangular in the far-
wall field. Very fine grid clustering close to the wall is required to extract accurately the 
pressure gradient and the shear stress. Only half of the domain is simulated because of the flow 
symmetry. The typical number of computational cells is 150000. The boundary conditions are 
the velocity distribution at the exit of nozzle and the pressure outlet for the circular boundary in 
the ambient air. The impingement plate and the nozzle sides are regarded as impermeable walls. 
 

  
Figure 2 

(a) Domain geometry for L/d=8.   
   The dimensions are in meters. 

(b) Close-view of the mesh at 1d from the 
stagnation point (x=0, y=0) 
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2.2 Simulation parameters 
Since the quantities to be sought for are the pressure and the wall shear stress, the mesh is 
designed to solve the flow up to the viscous sublayer, which is estimated to be few microns 
high. Since we are only interested in mean values, a RANS model is adopted instead of Large 
Eddy Simulation, disregarded in this study due to its time cost. The k-ε turbulence model is 
used in its Realizable version. The initial version of this model, so-called standard k-ε, uses for 
closure the hypothesis that the first cell at the wall lies in the equilibrium layer where the 
production of k and ε are in equilibrium; it will be therefore avoided, as well as logarithmic wall 



functions. The k-ε Realizable allows avoiding the non-physical results obtained when the mean 
velocity gradient (thus the shear stress) is too high. One of the k-ε constants Cµ is made 
variable5, and sensible to the velocity gradient and turbulence. Shih et al.6 apply this idea, and 
replace the ε equation of the initial model by a transport equation of the square of vorticity 
fluctuations. 

The numerical schemes are 2nd order upwind, and the solver is used in double precision. In order 
to point out the influence of parameters such as the velocity profile at the exit of the nozzle and 
the initial turbulence intensity level, several computations are performed for a nominal standoff 
distance L/d=8. Top-hat and developed velocity profiles are tested. The top-hat profile is a 
uniform velocity profile across the width of the slot, while the developed profile is computed 
from the experimental data of Maurel7. The value of the turbulence intensity TI at the exit of the 
nozzle is fixed to 1%, 10% and 20%, respectively. Simulations are also conducted for L/d=2, 4, 
6, and 8 with the appropriate corresponding meshing, and turbulence intensities of 0.1% and 
10%. 
 
2.3 Results 
The final normalized residuals are found to be exceptionally low (of the order of 10-9 in the less 
converged simulation). This good degree of convergence is attributed to the mesh quality in the 
near-wall region, but also to the use of the solver in double precision. 

The normalized pressure gradient distribution obtained for different inlet velocity profiles and 
TI-values is plotted in Figure 3a for L/d=8 and a jet Reynolds number Rej=4500 (based on the 
nozzle slot opening d and the jet exit velocity U0). The degrading effect of the initial turbulence 
on the pressure gradient can be depicted: the peak value decreases of 20% when the initial 
turbulence augments from 1 to 10%. Moreover, the location of the peak is shifted of 28% away 
from the stagnation point in terms of x/d. This is probably due to the reduction of the potential 
core length caused by the higher initial turbulence level7, which accelerates the mixing layer 
formation at the edges of the jet. On the other hand the initial turbulence level does not affect 
much the development of the wall jet. Comparatively, the velocity profile has a much weaker 
effect on the evolution of the pressure gradient.  

The corresponding wall shear stress distribution is plotted in Figure 3b. As for the pressure 
gradient, the shear stress lessens as the initial turbulence intensity increases. Now the inlet 
velocity profile has a more important effect: the “ideal” (top-hat) profile gives higher values 
than the developed profile. The difference reaches 12% at the peak value, for TI=20%. Since the 
wall shear stress is a velocity gradient quantity, it can be inferred that the initial velocity 
gradient at the exit of the jet, which is lower in the case of a developed profile, involves a lower 
gradient after the deflection of the flow in the stagnation region.  
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Figure 3: Results of Fluent simulations for L/d=8, Rej=4500 

(a) Normalized pressure gradient at the wall  (b) Normalized wall shear stress  



3 Experimental approach 
Experimental measurements are conducted in order to provide a database to establish 
correlations for ∇Pmax and τmax, as well as a validation of the numerical results.  
 
3.1 Facility 
The experimental approach is discussed in 8, therefore it will not be described into details here. 
The setup is sketched in Figure 4. It consists in a 2D slot nozzle impinging normally on a plate 
mounted on a displacement system 2 µm accurate. The plate is instrumented with a 0.5 mm 
diameter static pressure tap, while the shear stress is measured with the so-called razor-blade 
technique explained in8. It uses simplified Stanton tubes formed by a razor blade located over a 
pressure hole. The size of the probe in this case is 75 µm and the blade is 150 µm thick. The 
uncertainty analysis related to this technique is also reported in 8. The static pressures are 
measured by a membrane pressure transducer; and the signal is acquired at 2 kHz on a Personal 
Computer. The spatial step for the profiles is 0.1 or 0.2 mm, depending on the nozzle width. The 
nozzle geometry is the same as the one described in 8. A 14 kW centrifugal blower produces the 
air flow. The turbulence level at the exit of the jet is measured with a hot wire (7.5 kHz 
frequency response) located at the centre of the nozzle. The turbulence intensity is 1.1% at 1 
mm and 1.5% at 2 mm from the nozzle lips, respectively. Although the hot wire might be 
intrusive for a nozzle slot opening d=1.4 mm, the order of magnitude of the turbulence level can 
be considered as representative. 
 

                  
Figure 4: Sketch of the experimental setup 
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3.2 Results 

• Validation of numerical simulations 
Despite the use of a computationally cheap model, the wall pressure gradient is well captured in 
amplitude (Figure 5a), considering that the measured TI was about 1%. However, the 
∇Pmax.d/Pn peak location is poorly predicted by the numerical simulations. Such a discrepancy 
results from the turbulence model adopted. Two equations models are known to have 
difficulties in predicting stagnation flows. This drawback has already been emphasized by 
Durbin9,10 and Behnia et al11. Indeed, the same exercise repeated through LES simulation leads 
to an excellent agreement with experiments8. 

As far as the shear stress is concerned, the location of the peak is closer to experimental results, 
as depicted in Figure 5b. The profiles compare qualitatively well, but the experimental values 
are systematically lower than the numerical ones. This drift might result from the effect of the 
physical size of the Stanton probe (razor blade), which tends to underestimate the value of wall 
shear stress. Moreover, it is worth noting that the probe calibration is conducted in a fully 
developed turbulent channel flow with zero pressure gradient, which in essence is rather 
different from that of an impinging jet. In the latter indeed, the stagnation zone may be partially 
laminar, because of the strong favorable pressure gradient4,12. This pressure gradient effect tends 



to counteract the underestimation due to the probe size12. These antagonist sources of error 
make it difficult to appraise the complete validation of the numerical simulations. In any case, 
the pressure gradient flow conditions in the stagnation region (x/d<1) are beyond the 
recommendations of Patel13 for a maximum uncertainty of 6%. We can therefore expect much 
higher experimental uncertainties on the shear stress. 
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Figure 5: Fluent simulations and experimental data comparison : L/d=8, Rej=4500 

(a)  Pressure gradient at the wall  (b) Normalized wall shear stress  

 
Based on a laminar boundary layer hypothesis in the stagnation zone, Phares et al.4 develop a 
theoretical model for the maximum shear stress in the case of L/d≤8. For that purpose, they 
calculate the different flow regions independently, with the respective appropriate 
approximations for Navier-Stokes equations (free jet, non viscous impacting flow, impingement 
boundary layer and wall jet regions). This model gives a τmax/Pn value of 0.0153 for L/d=8, 
while the present numerical simulations predict values between 0.0135 and 0.0165. This good 
agreement supports the physical intuition that the maximum shear stress is located in a laminar 
boundary layer region, at least in the present conditions. 

 
• Pressure gradient correlation 

Typical pressure distributions obtained experimentally for 2≤L/d≤8 are presented in Figure 6a. 
The jet Reynolds number is 4500, while the nozzle gap is d=1.4 mm. For these L/d values, they 
can be approximated by the following expression, which does not depend on the jet Reynolds 
number within the range considered (2700≤ Rej ≤6800): 
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where ξ=x/b. b is the location of Pmax/2 with respect to the jet axis. Then differentiating equation 
(1) leads to the following pressure gradient correlation: 
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The corresponding curve is shown in Figure 6b. The maximum dimensional pressure gradient is 
thus given by the following expression: 
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Figure 6 
(a) Typical experimental pressure profiles 

(Rej=4500, d=1.4 mm) 
(b) Pressure gradient correlation 

 
The evolutions of Pmax/Pn and b/d are found to be independent of the jet Reynolds number 
between 2700 and 6800, and they can be modeled by the following expressions (Figures 7a and 
7b): 
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Figure 7 
(a) Evolution of the normalized Pmax with L/d (b) Evolution of the normalized b with 

L/d 
 
The model thus obtained for the normalized maximum pressure gradient  is 
compared to the one of Tu and Wood

nPdPP /.ˆ
maxmax ∇=∇

maxP∇

3, and to the numerical data in Figure 8. Tu and Wood 
provide a very complete set of wall pressure and shear stress measurements beneath a plane 
impinging jet, for wide range of L/d between 2 and 20. Correlations for  and τmax can 
easily be derived from their database. The present experimental correlation exhibits the same 
trend as the model of Tu et al., characterized by a plateau type behaviour up to L/d=6, and a 
smooth transition over 6≤L/d≤8, where the dependence of the pressure gradient on the distance 
L/d is still weak. This plateau is certainly related to the behaviour of the potential core of the jet, 
although it is quite longer (6d). Indeed, depending on the turbulence intensity, the numerical 
simulations give potential core lengths ranging between 1.5d and 5d for L/d=8 (the core length 



is estimated as the distance at which the velocity on the jet axis is 99% of the maximum). For 
larger standoff distances, the ∇Pmax evolution with L/d coincides with the pioneer relation of 
Beltaos13 for a developed impinging jet (L/d≥8): 
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where B is a coefficient depending on the nozzle geometry. 
 
In the range 2≤L/d≤8, the proposed correlation yields values 12% larger than Tu’s data. Several 
reasons may be invoked to explain such a discrepancy: a difference in the nozzle geometry 
and/or in the initial turbulence level (both not specified in 3). The Fluent simulations lead to a 
monotonic decrease of the pressure gradient and a highly overestimated value for strong 
confinements (L/d=2). Such a result might be attributable to the artificial confinement produced 
by the too close boundaries of the numerical domain and/or by a less inflow entrainment, as 
suggested by Babu and Mahesh14. 
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Figure 8: Comparison of experimental and numerical correlations for the maximum pressure 

gradient as a function of L/d 

 
• Shear stress correlation 

Typical shear stress profiles obtained experimentally are shown in Figure 9, for Rej=4500 and 
d=1.4 mm. It is observed that the peak position moves slightly from the jet axis as L/d increases. 
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Figure 9: Typical experimental shear stress profiles (Rej=4500, d=1.4 mm) 

 
The normalized maximum shear stress  is plotted in Figure 10a. Up to 
L/d=8, its evolution is linear, and dependent on the jet Reynolds number. It can be modeled by 
the following equation: 
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where coefficients a and b are expressed in function of Rej: 
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Figure 10 

(a) Evolution of normalized  with L/d maxT̂ (b) Evolution of Tmax/Pn with L/d 
(experimental data) 

 
The resulting shear stress correlation is in good agreement with the correlation proposed by Tu 
and Wood3 (Figure 10a), who used Stanton probes similar to ours, although slightly thinner (100 
µm instead of 150). They show that an augmentation of the physical size of the probe leads to 
an underestimation of the shear stress, which supports the fact that their values are slightly 
higher than the present data. The normalized shear stress seems to tend towards an asymptotic 
behaviour for Rej>7000, as also found by Tu et al. They argue that this might be related to 
transition in the developing wall jet, but this trend could also result from a more important error 
due to the probe size effect when Rej increases. For L/d≥8, the values converge towards the 
model of Beltaos13: 
 

L
dPC n .
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where C is also a coefficient depending on the nozzle geometry. Typically, it is found that 
C=0.082 for Rej=4500. 
 
The plot in Figure 10b presents the same data as in Figure 10a, but it figures out the existence of 
a shear stress plateau up to L/d=8. The maximum shear stress values extracted from the 
numerical simulations are 65% to 90% higher than the experimental data, as L/d decreases from 
8 to 2. But these numerical results are in very good agreement with the theoretical predictions of 
Phares et al.4, which reinforces the hypothesis of a laminar boundary layer in the stagnation 
region of the jet. The difference observed with the experimental results explained in details in a 
previous paragraph. On a numerical point of view, the viscous sublayer is estimated to be 3 µm 
thick at the peak location, which is within the mesh resolution at the wall. However, the 
impinging jet flow is very particular because of its change of direction and re-acceleration, 
which implies a very thin boundary layer. Because of the strong favourable pressure gradient, 
the logarithmic wall law is not valid in the stagnation region, and a precise computation 
including the laminar sublayer is required. The numerical estimation of shear stress is therefore 
a challenging task. 
 



The wiping actuators have been experimentally characterized, and correlations are proposed for 
their evolution in the range 2≤L/d≤8. These correlations compare well with data from literature, 
when the same type of shear stress probe is used. They will be implemented in an analytical 
wiping model described in section 4. The numerical results reveal some discrepancy, although 
they are in agreement with theoretical predictions assuming a laminar boundary layer in the 
stagnation zone.  
 
4 Jet wiping Modeling 
4.1 Mathematical formulation 
Several models for the film interface in jet wiping are proposed in the literature with different 
levels of solutions1-2,15-16. The details of the derivation will therefore not be developed here, only 
the main features are emphasized. 

The theoretical description of gas-jet wiping usually relies on the lubrication approach, which 
assumes negligible inertia with respect to viscous, gravity and pressure terms. The (Ox) 
momentum equation of the film states that the shear stress balances the weight and pressure, and 
the associated boundary conditions express the no-slip condition of the film on the substrate, 
and the continuity of shear stress at the free surface. The resulting flow rate equation has the 
following non-dimensional form: 
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where  and T  are respectively the pressure gradient and shear stress distributions of the 
jet at impingement.  and Q are the local film thickness and flow rate. The normalized 
variables are defined as follows: 
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0/ qqQ = 0.3/ hVP0q 2= , , and  with 1/ 1 +gρˆ ∇=∇ PP 0/ˆ ττ=T gVP 110 ρµτ = . 
Subscript 0 refers to the dragged liquid film without jet wiping, and 1 refers to the liquid phase 
properties. 
Equation (10) has two unknowns, and Q, and the continuity equation is needed for its solving. 
A simplified model can be derived from (10), assuming a negligible effect of the surface 
tension: 
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The solution of (11) is obtained by solving locally the cubic equation, using the pressure 
gradient and shear stress distributions  and  obtained experimentally or numerically. P̂∇ )(ˆ XT
 
A zero-dimensional model (hereafter referred to as the Knife Model) can be derived from (11) if 
one postulates that the wiping mechanism is the result of the first maximum jet pressure 
gradient and maximum shear stress. This approach assumes implicitly that both quantities act at 
the same location  (which is very close to realityoptX 2) and that surface tension has no effect on 
the final film thickness. With such an approximation, the film equation reduces to the simple 
algebraic equation: 
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Since there are two unknowns, h  and Q , a second equation is needed. It is derived by 
stating that the wiping efficiency corresponds to the optimum final net flow rate, so that: 
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Once the flow rate Q is determined from (12), the final film thickness hf is readily obtained. 
 
4.2 Experimental facility 
The jet wiping experiments consist in measuring the mean film thickness after wiping. The test 
facility which was used for that purpose is shown in Figure 11. It includes a vertical rubber strip 
5 m long and 0.5 m wide, stretched between two rolls. The wiping nozzle is the same as the one 
described in Figure 3. The strip is set into motion by the upper roll, which is entrained by an 
electric motor. The strip velocity, which can be adjusted precisely in the range 0.5 to 5 m/s, is 
measured by means of a tachometer. The lower roll is fixed to a mechanical displacement 
system allowing the adequate stretching of the strip. It dips into a bath of water to which a small 
concentration of surfactant was added, to ensure a good wettability of the strip. The surface 
tension of the water drops to 0.03 N/m. The nozzle is positioned 0.8 m above the free surface of 
water and perpendicularly to the strip. The 0.6 m nozzle is sufficiently long to avoid edge 
effects, and it is fed up to 8 kPa with a blower similar to the one mentioned before. A calibrated 
Validyne pressure transducer measures the pressure in the nozzle chamber. For sake of 
simplicity, the wiping mechanism is studied only on one side of the strip. To ensure a good 
stability of the strip in the impact region of the jet, the rear face is sliding on an aluminium plate 
lubricated by the entrained water. The distance L between the nozzle and the strip is tuned using 
shims. The liquid film mean thickness  is determined through the flow rate measured by 
weighting the liquid collected at the top of the strip during a time elapse. The film is indeed 
withdrawn at the top of the band by the action of a rubber scraper combined to a vacuum cleaner 
which is based on 4 bars air ejectors. Two lateral small jets draw the liquid film towards two 
suction ports which are connected to a cyclone. A balance measures the amount of the collected 
water while the weighting time is controlled by a chronometer. The measurements of the film 
thickness  after wiping are reproducible within 3% in average, which is the order of 
magnitude of the uncertainty on . 

fh

fh

fh
 

 
Figure 11: Gas-jet wiping facility 

 
4.3 Validation 
The correlations of the wiping actuators ∇Pmax and τmax are now inserted in the 0D Knife model. 
The aim is to verify that the film thicknesses can be adequately predicted in the confined gas-jet 
regime. 



Experimentally, the evolution of the film thickness hf with L/d is measured for 2≤L/d≤12. All 
wiping parameters are kept constant. The substrate velocity is fixed to 1.53 m/s. Three nozzle 
gaps are tested: d=0.7, 1.4 and 2.1 mm. For each slot, the nozzle pressure Pn is adjusted so that 
hf ≈17 µm for L/d=2 and then it is kept constant throughout all the tests. The corresponding jet 
Reynolds numbers are 2100, 4500 and 7400, respectively. 

Figures 12 to 14 show that in the three cases, a wiping plateau is observed. In this region, which 
extends up to L/d ≈7 (well beyond the jet potential core length) the film thickness is almost 
independent of L/d. For L/d>8, the thickness curve has a steeper slope, which is characteristic of 
the jet development in the far field13. 

This film thickness behaviour is the reflection of the evolution of the wiping actuators in 
confined mode. The maximum pressure gradient is constant until L/d=5, and it undergoes a 
transitional decrease for L/d between 6 and 8, in which the dependence of hf on L/d is weaker 
than in the fully developed mode (L/d>8). Likewise, the maximum shear stress decreases very 
slightly until L/d=8, almost forming a plateau (Figure 10b). As depicted in Figure 12 for 
Rej=4500, the values predicted by the 0D model completed with the experimental closure 
correlations compare well with the jet wiping measurements. They are also in agreement with 
the predictions obtained when the correlations of Tu and Wood3 are used. The predictions 
obtained when the effect of the shear stress is omitted shows that its influence cannot be 
neglected. The predicted final film thickness is in average 40% higher. In the confined mode, 
the Knife model turns out to be a bit more sensitive to the pressure gradient than to the shear 
stress: an increase of 20% increase of ∇Pmax involves a hf decrease of 6.5%, while a similar 
increase of τmax results only in a decrease of 5%. 

The maximum pressure gradient and shear stress obtained from the numerical simulations yield 
an underestimation of the final film thickness. This is due to the higher values found for the 
shear stress. As expected, the predictions based on the shear stress model of Phares et al.4 are in 
good agreement with the numerical results. The thickness plateau is not so obvious; that can be 
explained by the monotonic decrease of ∇Pmax. 

The same exercise is repeated for two different Reynolds numbers: Rej=2100 with d=0.7 mm in 
Figure 13 and Rej=7400 with d=2.1 mm in Figure 14. Figure 13 shows that for the lowest 
Reynolds number, the Knife model predictions are in excellent agreement with measurements. 
The model of Phares leads to an underestimation of the film thickness, probably due to the non 
adequacy of the model for such low Reynolds number. On the other hand, Figure 14 points out 
that for Rej=7400, the correlations proposed here lead to an overestimation of 25%. At this 
higher Reynolds number, the jet-correlation proposed by Tu and Wood3 does not provide better 
results either. To explain this discrepancy, two sources of error can be identified. The first one 
lies in the concept of the Knife model itself which, by assuming the same location for ∇Pmax and 
τmax, tends to predict systematically a smaller final thickness. The second one is the possible 
underestimation of the wiping actuators at high jet Reynolds number; ∇Pmax alone would need 
to be 50 to 110% higher to obtain predictions in agreement with measurements, and τmax alone 
would need to be 40 to 75% higher. The experimental estimation of τmax could possibly reach 
uncertainties of this order of magnitude, because of the measurement technique used, which 
becomes probably more inaccurate as Rej rises (the higher is the Reynolds number, the thinner 
is the boundary layer in the stagnation zone of the jet). The model of Phares provides good 
results (it is probably the good Rej range for it to be applied), and this reinforces the hypothesis 
formulated before that the Stanton probe measures erroneous shear stress at higher Rej. 

The final film thickness predicted by the Knife model is thus affected by a combination of 
possible errors, and it is hard to know how they compensate each other. The crucial effect of the 
shear stress is demonstrated here, and a precise estimation of the latter is required for a reliable 
wiping model. The confrontation of the Knife model output with the results of wiping 
experiments allows figuring this problem. Further uncertainty analysis of the shear stress 
measurements is particularly needed for a clarification of the Rej-effect. The discrepancy 



between experimental and predicted hf values for Rej=7400 cannot be attributed to a single 
cause. 
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Figure 12: Comparison of jet wiping measurements with Knife model predictions based on 
experimental and numerical correlations for ∇Pmax and τmax (Rej=4500, d=1.4 mm) 
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Figure 13: Comparison of jet wiping measurements with Knife model predictions for Rej=2100 
and d=0.7 mm 

 

 
 

Figure 14: Comparison of jet wiping measurements with Knife model predictions for Rej=7400 
and d=2.1 mm  
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5 Conclusions 
The jet wiping process for small standoff distances is studied through theoretical, numerical and 
experimental approaches.  

The methodology consists first in characterizing the wiping actuators produced by the 
impinging gas jet. Correlations are proposed for the evolution of the maximum pressure 
gradient and shear stress with the normalized standoff distance in the range 2≤L/d≤8. They 
compare qualitatively well with numerical simulations 

The jet correlations are then implemented in an analytical zero-dimensional model (“Knife 
model”) developed for the prediction of the film thickness. The wiping predictions are 
compared to experimental data obtained on a dedicated facility. For lower jet Reynolds numbers 
Rej≤4500, the Knife model, based on the ∇Pmax and τmax correlations found experimentally 
provides very good predictions for the final film thickness. The operating window exhibits a 
plateau of the film thickness for L/d ranging from 2 to 7. Such a finding is of great interest for 
practical applications, because a small variation of L due to substrate vibration results in a 
negligible variation of the coating thickness.  

This study is a first step in the applicability of the Knife model in industrial jet wiping, in 
confined mode. However, further study is needed for the validation of the model at higher 
Reynolds numbers (Rej>7400), like it is usually the case on industrial lines, e.g. galvanization 
lines. 
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