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If a body in a flow is provided with small ridges aligned in the local flow direction, a 
remarkable drag reduction can be reached under turbulent flow conditions. This surprising 
phenomenon is called 'shark skin effect'. Since for coating processes often low Reynolds 
numbers are relevant, we examine the possibility of a resistance reduction due to a rippled 
surface topography in Stokes flow. We especially analyse the influence of wall riblets 
perpendicular to the flow direction on the mean transport velocity in gravity–driven creeping 
film flows following the idea that eddies generated in the valleys of the riblets act like ‘fluid 
roller bearings’ and hence can reduce drag. Parameter studies with varying flow rate, bottom 
amplitude and bottom shape are presented. For the given bottom shapes the maximum 
enhancement of transport velocity is found by optimizing the film thickness. 
 
 
1 Introduction 
It is yet controversely discussed that the dermal surface morphology of sharks is in order to 
improve the sharks' swimming performance [1]. Nevertheless, it is widely accepted that for 
bodies in turbulent flows a reduction of skin friction by some percent can be reached if the 
surface of the body is provided with small ridges aligned in the local flow direction [2]. This 
rather counter−intuitional phenomenon occurs in turbulent flows. Here, we address a 
fundamental question: Is drag reduction possible if inertia is absent, e.g. in creeping flows? 
 
In the present article we investigate in film flows over a periodic topography. Film flows occur 
in many technical processes as well as in nature. In the large field of coating techniques, 
especially where thin liquid films are forced to spread over solid substrates, they are of a great 
importance. Flows of this type are found e.g. in the manufacturing of electronic devices. We 
especially consider a steady, gravity−driven film flow of an incompressible Newtonian fluid on 
an inclined plane. The bottom of the inclined plane is provided with periodic corrugations 
according to Figure 1. 
 
Our investigations are motivated by the following idea: if the bottom is provided with riblets 
aligned perpendicular to the flow direction, kinematically induced eddies can be created even in 
creeping flows where inertia is absent. These eddies are expected to act like ‘fluid roller 
bearings’ and therefore to induce a positive effect on the mean transport velocity in the film. 
 
 
2 Mathematical formulation 
2.1 Basic assumptions, scalings and method of solution 
We assume that the flow is steady, two−dimensional, creeping and that the film is thick enough 
such that the surface curvature can be neglected [3]. According to Figure 1, the mean film 
thickness is denoted by , the periodic length by H λ  and the mean inclination angle by α . 
Cartesian coordinate system is used with the x −axis placed at the mean level of the bottom 
contour, the −axis in line with the ridges and the −axis normal to the mean level of the 
bottom. 
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Figure 1: Sketch of the flow geometry. 

As characteristic length  is used for the scaling of all lengths in both directions. By / 2λ π
( )2: sin / 8= 2ρ λ α π ηU g
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 both velocity components are scaled, by the characteristic shear stress 
 the pressure is scaled. Due to the vanishing surface curvature and above scaling the 

dimensionless mean geometrical film thickness 2 /= π λh H  and the bottom topography b x  
are the only parameters which enter the problem. 
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The basic equations are the continuity equation and Stokes’ equations, supplemented by the 
no−slip condition at the bottom and the kinematic and dynamic boundary conditions at the 
surface. Their solution is calculated by a semi−analytical approach based on complex variable 
method, which allows for a reduction of the problem to the solving of an algebraic set of 
equations. This method and the solving procedure is described in detail in the articles [3,4]. 
 
2.2 Bottom topography 
For the modelling of wall roughness Panton [5] suggests a 'brush model', i.e. an infinite array of 
equidistant narrow peaks. Therefore, we choose the topography b x  among a class of 
functions with similar properties. We especially consider trigonometric polynomials 
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where . Obviously, the first equation in (2) is a normalisation condition for the 
non−dimensional amplitude 

1, , 1= "k N −
: 2 /=a Aπ λ  of the topography. By means of the second condition 



in (2) all derivatives of b  in ( )N x 0=x  up to the order 2 2−N  vanish. The resulting shapes, 
which are shown in Figure 2 for 1=N ,  and 10  are equidistant narrow peaks at 3 = ±x π  
with nearly planar regions between the peaks. These shapes are subsequently called peak arrays 
of order . N
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Figure 2: Three different bottom shapes. 

 
By increasing the order , the peaks becomes more and more narrow. These shapes provide 
good approximations for the idealised array of brush–like narrow peaks. 
 
2.2 Mean transport velocity 
We define the mean transport velocity as 

 u  (3) 

with the two–dimensional flow rate V  and the mean transport thickness h . The latter one has 
to be understood as mean thickness of the cross section of the flow which contributes to the 
material transport, i.e. the film above the separation areas. If the separatrix of the primary eddy 
is given as , 

t

( )z s x= x ≤  with  denoting the –positions of the triple points, the 
mean transport thickness results in 
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Furthermore, by 
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the reference thickness of a film flow on a plane bottom with the same flow rate as the flow 
over the topography is defined. The three quantities ,  and  are illustrated in Figure 3. 

Thus, for a fixed flow rate V , the comparison of the mean transport thickness  with the 
reference thickness  delivers an adequate measure for enhancement or reduction of the mean 
transport velocity in the film: In case of h , the mean transport velocity is reduced, 
whereas  indicates enhancement of . 
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Figure 3: Mean transport, mean geometrical and reference film thickness. 

 
3 Results 
3.1 Streamlines and eddy creation 
Streamline patterns have been calculated for various shapes, amplitudes and film heights. For 
small amplitudes the streamlines follow the bottom contour, whereas flow separation is 
observed if the amplitude exceeds a critical limit. As representative examples in Figure 4 the 
streamlines in the vicinity of the bottom are presented for the shape b  with two different 
amplitudes, namely 

10

0.34a π=  and 1.0a π= . 
 

  
Figure 4: Near--bottom streamlines of film flows over the topography  with non−dimensional 

amplitude (a) a
10b

0.34π=  and (b) 1.0a π= . 

 
The reference film thickness is 0 3h π=  in both cases. The critical amplitude for the primary 
flow separation is 0.214a π≈ . Thus, in Figure 4a flow separation is already apparent: A pair of 
eddies has been created at the positions of maximum curvature. With increasing amplitude the 
eddies are growing, which leads to the merging of the two eddies to a single one. Such a case 
with a large single eddy which covers the major part of the region between two neighbouring 
peaks is shown in Figure 4b. In this example we especially see a slightly curved separatrix 
passing nearly from tip to tip. This feeds the hope of a probable resistance reduction, since the 
eddies are supposed to act like 'fluid roller bearings'. By increasing the amplitude further, a 



secondary pair of eddies is created at the critical amplitude 1.212a π≈  for secondary flow 
separation. 
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3.2 Mean transport velocity 

In Figure 5 the relative film elevation ( )0 /th h h−

10

0  is plotted versus the amplitude  for the 
three different bottom contours ,  and b . This parameter study has been carried out with a 
fixed flow rate of V

a

1b 3b
318π=� , corresponding to a reference thickness of 3π= . Additionally, 

the onset of primary and further flow separation is indicated in the diagram. From the beginning 
up to an amplitude of about / 3π , the film elevation is monotonously increasing for all three 
different shapes, which indicates a reduction of the mean transport velocity due to the bottom 
corrugations. Note, that within this parameter regime no positive effect can be expected since no 
eddies are present. However, the curves reach maxima slightly after the primary eddy 
generation and pass then into a monotonous decrease due to reduction of friction by the eddies. 
Obviously, both the height of the maximum as well as the decrease after the eddy generation are 
more pronounced for bottom shapes with sharper peaks. 
 

 
Figure 5: Relative film elevation vs. amplitude of flows over different shapes. 

 
For the curve associated to the bottom b  the film elevation becomes negative for high 
amplitudes, i.e. the mean transport velocity exceeds the corresponding mean transport velocity 
of the flow over a plane bottom. At the highest amplitude considered in our calculations, 

10

1.8a π= , this enhancement of the mean transport velocity reaches . 
 

The increase of the mean transport velocity indicates an improved mass transport in the volume. 
In contrast to this, our calculations delivered no significant changes in the surface velocity. 
Hence, the influence of bottom corrugations and eddies on the flow is restricted to the near–
bottom region of the film. Thus, it should be expected that the relative enhancement of the mean 
transport velocity is larger in thinner films. On the other hand, the eddies are shrinking when the 
film thickness is decreased, which leads to a smaller enhancement of the mean transport 
velocity. In very thin films the eddies can be even completely suppressed, see [3], whereas in 



very thick films the size of the eddies reaches an asymptotic value and therefore the relative 
effect tends with 1

0h−∼  to zero for increasing . Hence, for a given bottom topography an 
optimum film thickness exists. Besides, a stronger drag reduction is found for sharper peaks. 
Focusing on the peak array of order 10  for fixed bottom amplitude a

0h

1.6π=  and varying the 
reference film thickness, we found according to Figure 6 the optimum relative film elevation 
and therefore a maximum enhancement of the mean transport velocity of 1%  at a reference film 
thickness of 0h 3.75π= . 

 

 
Figure 6: Relative film elevation vs. reference film thickness for the peak array of order 10 with 

non−dimensional amplitude 1.6=a π . 

 
 
4 Conclusions 
The parameter studies on the three different topographies ,  and b  revealed a noticeable 
effect of the bottom on the material transport in a creeping film flow: For the shapes  and b  
we found a decrease of the mean transport velocity compared to the flow over a plane bottom, 
whereas for the shape b  with the sharpest peaks an increase of the mean transport velocity 
becomes apparent at sufficiently high amplitude. Thus, a comparison to the 'shark skin effect', 
which has been successfully applied to ships and airplanes for drag reduction, is near at hand. 
The present effect, however, is essentially different from the popular shark skin effect: The 
increase of the mean transport velocity has been calculated for creeping flows, whereas the 
shark skin effect occurs in turbulent flow at Reynolds numbers 10 −10 . Furthermore, the 
rippled structures of the shark skin are directed longitudinal to the flow, not transversal as it is 
the case here. The explanation for these differences are the different mechanisms behind the two 
effects: In case of the classical shark skin effect, the control of the streamwise eddies in the 
turbulent flow gives rise to drag reduction [2], whereas in case of creeping films the rippled 
bottom topography enforce the creation of eddies which act on the flow like a kind of fluid 
roller bearing. Nevertheless, a common feature of the shark skin effect and the effect observed 
in the present paper is the reduction of resistance in the flow by means of rippled wall 
structures. 

1b 3b 10

4

1b 3

10

6

 



On the other hand, the eddies have a vanishingly small effect on the surface velocity of the film, 
compared to the influence on the mean transport velocity. This shows that the drag reduction 
effect is located in the near−bottom region. 
 
A parameter study on the film thickness revealed the maximum enhancement of the mean 
transport velocity of 1% . It is found at an optimum film thickness of 0 3.75h π= . Although an 
improvement of 1%  seems to be a small effect, the benefit of a rippled structure can be 
worthwile in long term processes. It is an open question up to which extend the value of 1%  
can be improved by varying the bottom shape. 
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