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The lattice Boltzmann method (LBM) is a rapidly developing alternative fluid flow simulation 
method based on kinetic theory rather than continuum mechanics. This paper presents a brief 
summary of a simple LBM model, which is subsequently used to simulate the spreading of a 
droplet on a surface with a wettability gradient. Results are compared with a corresponding 
simulation based on lubrication theory, and show that the LBM can capture the main physical 
effect (i.e. spreading) but its quantitative predictions of droplet shape are rather different from 
those found from the continuum-based simulation. The reasons for this difference are discussed, 
along with potential means of improving agreement.  
 
1 Introduction 
In recent years, a fluid flow simulation technique known as the lattice Boltzmann method 
(LBM) [1] has often been cited as a promising alternative to methods based on direct solution of 
the Navier-Stokes equations. The LBM is a non-continuum-based model developed from 
statistical mechanics, and simulates the dynamics of ‘pseudo-particles’ constrained to move and 
collide with each other on a structured lattice. As explained in more detail below, local values of 
macroscopic quantities such as velocity, density and pressure can be calculated from probability 
distribution functions, and it can be shown that the LBM reproduces the incompressible Navier-
Stokes equations for small Knudsen and Mach numbers† [2]. Historically the LBM developed 
from lattice gas automata [3], driven by the desire to remove the statistical noise associated with 
such Boolean methods. Later the LBM was shown to be a special discretization of Boltzmann’s 
equation [4,5]. 

From a mathematical point of view, the fact that the LBM’s pseudo-particles only interact in a 
localized fashion means that there is no large matrix to invert, unlike in methods based on dis-
cretizations of global partial differential equations. This in turn means that the LBM is 
particularly good for simulating flows involving highly complex, multiply-connected domains – 
for example the flow through porous media like paper, or the flow over rough surfaces. Such 
simulations avoid the need for empirically-derived approximations such as Darcy’s law. The 
numerical algorithm encapsulating the LBM is very simple, and this feature – combined with its 
localized nature – makes the LBM ideal for parallel programming to exploit modern large-scale 
computers. Indeed the method has been shown to yield very good scalability [6]. 

Advantages of the LBM from a physical point of view include the availability of several 
multiphase models, which can model interface break-up and coalescence and also interactions 
with chemically non-uniform surfaces. The method is also valid at smaller length scales than the 
Navier-Stokes equations, which makes it good for microfluidic simulations [7]. 

The LBM is a very rapidly growing field of research, with about 3 or 4 papers appearing in the 
literature every week. Much of the development of the method occurs in the physics 
community, and in many cases the driving motivation is to capture increasingly complex 
phenomena without necessarily testing the quantitative performance of the method. Simulations 
of coating flows are however of most use if they are able to make quantitatively accurate 
predictions of important flow features – for example the line speed at which a particular 
instability begins. The purpose of this paper is to examine the performance of a multiphase 
lattice Boltzmann method in the context of a problem of interest to the coating community, 

                                                 
† The Knudsen number, Kn, is the ratio of the molecular mean free path to the flow’s characteristic length 
scale, while the Mach number, Ma, is the ratio of the flow’s characteristic velocity scale to the speed of 
sound in the fluid. 



namely the spreading of a droplet. Results are compared against corresponding simulations 
made using lubrication theory. 

A very brief sketch of the LBM is given in the next section; the presentation is intended mainly 
to demonstrate how different the method is from conventional CFD techniques – more detailed 
and rigorous treatments are available in the cited literature. Section 3 then outlines the problem 
to be considered, with results and discussion following in section 4 and conclusions in section 5. 
 
2 Outline of the lattice Boltzmann method 

2.1 Foundation and discretization 
The LBM stems from the Boltzmann equation, 
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where ),,( tξxf  is the single-particle probability distribution function (PDF), representing the 
probability of finding a particle at position x with velocity ξ  at time t, ),( txF  is an external 
force, and  is the integral collision operator. The latter entity is often simplified using the 
Bhatnagar-Gross-Krook (BGK) single-relaxation-time model [8], 
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where λ is the relaxation time, and 
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is a local Maxwellian distribution dependent on the specific gas constant, R, the temperature, T, 
and the local value of the macroscopic density, ρ, and velocity, u. These macroscopic quantities 
are determined from moments of the PDF with respect to the molecular velocity, i.e. 
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etc. Thus one can see that the seemingly very simple collision operator (2) is in fact highly non-
linear due to the inter-dependence of ρ, u, f, and  in equations (3) and (4). eqf

Temporal discretization of equation (1) is achieved by integrating over one time step, δt, and 
expanding as a Taylor series, keeping terms of O(δt). Momentum space is discretized by 
determining the integrals in (4) through quadrature, [4,5] i.e. 
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where iξ  is a set of discrete molecular velocities, and Wi corresponding weights. In the standard 

LBM, the iξ  are coupled to the spatial domain by means of a structured lattice, with a lattice 

spacing,  (c being the lattice speed). Figure 1 shows a popular two-dimensional lattice 
structure, consisting of 3 speeds (0, c and c√2) and 9 discrete molecular velocities (the eight 
pictured plus a zero velocity). 

tδcxδ =

Thus the spatial discretization is linked to that of the momentum space. The discretization 
process also introduces discrete distribution functions, fi, each associated with a different lattice 
link. The fi are the ‘pseudo-particles’ mentioned in the introduction. The evolution of  fi involves 
two stages: 
• Streaming: each fi is simultaneously propagated to the next lattice node in the direction of 

the velocity vector with which it is associated. 
• Colliding: the fi interact with each other at lattice nodes via the collision model (2). 
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Figure 1: (a) discrete molecular velocities associated with each lattice node in the ‘D2Q9’ 

model; (b) how the discrete velocities form the lattice.

2.2 Multiphase model 
There are essentially four multiphase models that incorporate different degrees of physics into 
the LBM [9-12]. The model used in this study is that of He et al. [13], which is an extension of 
the earlier work [12]. Using a mean-field approximation for intermolecular attractions [14] and 
including an exclusion-volume effect [15], He et al. [12,13] showed how the force in equation 
(1) can be reworked into a surface tension force, and how a stable numerical discretization of 
the system can be achieved by introducing an auxiliary distribution function associated with the 
pressure in the fluid. The lattice Boltzmann algorithm that arises from the above discretization 
and the introduction of the second distribution function is simply 
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where the  are PDFs associated with the ‘index function’, φ, which tracks the interface 
between the two phases, the g

if
i are  PDFs associated with the fluid pressure and density, τ  is the 

dimensionless relaxation time, and iF~  and iG~  are force terms resulting from the force term in 
equation (1).  Notice that the right-hand sides of equations (6) and (7) form the collision stage of 
the algorithm, where the PDFs interact with each other to model molecular collisions, while the 
left-hand sides encapsulate the streaming stage, where the PDFs propagate along their links. 
 
The moment equations (4) become: 
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where ψ is a function dependent on the equation of state (i.e. the van der Waals’ equation [14]), 
G  is the body force due to gravity, and Fs is the surface tension force, which is dependent on the 
density gradient through the (diffuse) interface. 
 



2.3 Boundary conditions 
Obviously no fluid domain is infinite, so inevitably the lattice of figure 1(b) must terminate at 
some form of boundary. The presence of a boundary complicates the algorithm slightly, because 
at the streaming stage nodes adjacent to the boundary will be expecting information (i.e. values 
of fi) from outside the fluid domain (e.g. from inside a solid wall). Hence one must obtain 
suitable values for this missing information. In the flow considered below, the two fluids are 
contained by four stationary smooth rigid walls aligned along the horizontal and vertical lattice 
directions. Three of these walls are in contact with only one fluid, and for these walls the 
simplest LBM boundary condition, the ‘bounce-back’, can be used effectively. This condition is 
implemented at wall nodes simply by reflecting each fi and gi propagated towards the wall back 
along the link upon which they arrived. More sophisticated boundary conditions are required to 
deal with moving walls (e.g. [16]) or with boundaries touching fluid-fluid interfaces, see the 
next section. 
 
2.4 Wetting model 
Cahn’s theory of wetting [17] provides a one-dimensional relationship between the gradient of 
density at a solid surface and the equilibrium contact angle on that surface. This theory has been 
used as the basis of a successful wetting boundary condition [18] suitable for the ‘free energy’ 
multiphase LBM model [11]. However, this condition is difficult to implement in the multi-
phase model used here because it results in an implicit equation for the index function, φ, which 
would require a complicated iterative procedure to be embedded within the otherwise simple 
LBM algorithm. A simpler and more convenient alternative is to adopt the ‘surface affinity’ 
idea of Iwahara et al. [19]. If Lφ  and Gφ  are the values of φ corresponding respectively to the 
liquid and gas phases of the van der Waals fluid, then the surface affinity is defined as 
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The interface has the profile [14] 

 ⎟
⎠
⎞

⎜
⎝
⎛ −

−−=
δ

φφφφ 0tanh)(
2
1)( zzz GL  (12) 

where z is a coordinate normal to the interface, z0 is the location of the ‘middle’ of the interface 
(i.e. where φφ =)( 0z ), and δ is a parameter governing the thickness of the interface. Using 
this, the liquid-vapour surface tension can be calculated in terms of Lφ , Gφ  and a free para-
meter, κ : 
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Similar expressions can be found for the solid-liquid and solid-vapour interfacial tensions, and 
Young’s equation then gives 
  (14) 2/)3(cos 2χχθ −=e

for the equilibrium contact angle, θe. Thus variations in contact angle along the solid surface can 
readily be included via the surface affinity, which determines φ at the boundary via equation 
(11) with no need for messy iterative procedures. 
 
3 Test problem 
The problem to be tackled by both the above LBM and lubrication theory is simply the 
spreading of a two-dimensional ‘droplet’ – in other words a filament – along a solid surface 
with a constant gradient in wettability, i.e. a linear variation in contact angle. The initial cross-
section of the filament is a parabolic profile, 
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where H0, and R0 are the initial height and in-plane radius, and x0 is the initial horizontal 
position of the filament’s centre. The lubrication model used to simulate this flow is a simple 
adaptation of that presented by Gaskell et al. [20], in which the variable contact angle is incorp-
orated through a disjoining pressure. 
 
3.1 Physical parameters 
The fluid properties used in the simulations are those of water, namely a density of 1000 kg m-3, 
a kinematic viscosity of 10-6 m2 s-1, and a surface tension of 70 mN m-1. The initial filament 
geometry was given by  and , with the contact angle at xm10 3

0
−=R m 104.6 4

0
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30° and the gradient in θe being 2.1°/mm. All these parameters are very easy to include in the 
lubrication model. 
 
3.2 Lattice Boltzmann parameters 
Determination of the correct parameters for the LBM simulation is not as straightforward as for 
the lubrication model. For single-phase flows the LBM parameters can be adjusted fairly easily 
to match physical flow conditions such as the Reynolds number. However, in multiphase 
models there is a diffuse interface with a characteristic thickness to consider. If this typically 
very small length scale is to be captured properly (say by having at least four lattice lengths 
across the interface), the lattice will have to be very fine, which will substantially restrict the 
spatial and temporal extent of problems that can feasibly be tackled. 

For example, suppose the interface thickness is . If m10 8−=h 5.1=δ , to give 4 or 5 lattice 
lengths across the interface, the lattice spacing should be of order . This means 
that a 1mm drop (which is admittedly rather large for a drop) would require a lattice comprising 
over 20 billion nodes! Therefore on must compromise either on the size of the system to be 
modelled or the accuracy with which the interface thickness is captured. When one notes that 
the fluid viscosity, surface tension and body force are also linked to the lattice size and the 
choice of relaxation time, it becomes clear that correctly specifying the LBM parameters to 
match the ‘real world’ is no trivial undertaking. 

m107/ 9−×=δh

 
4 Results And Discussion 
In obtaining the results presented here, the interface thickness was made artificially large 
( ) in order to model a 1mm filament using a feasible lattice size. Figure 2 shows the 
filament profiles predicted by lubrication theory. Note that in all the graphs shown here, the 
vertical scale is exaggerated by a factor of two. The lubrication results are as expected: the 
parabolic initial profile quickly spreads to form an approximately semi-circular shape, before 
the whole drop translates due to the variation in contact angle along the substrate. 

m10 6−

The corresponding LBM results are shown in figure 3, which reveals that the LBM captures the 
same spreading and translating effects, but the shape and speed of the filament are somewhat 
different from those from lubrication theory. Figures 4 and 5 show direct comparisons of the 
two methods’ predictions for the maximum height of the filament and the position of this 
maximum as a function of time. Again the same qualitative behaviour is seen, but there is a 
quantitative discrepancy in the spreading rates. Figures 4 and 5 also include data calculated by 
halving the interface thickness in the LBM. In practice this involves doubling the lattice and 
filament sizes in both dimensions, while keeping δ fixed. The results show that the choice of 
interface thickness/lattice size does influence the quantitative performance of the method.  

One should not set too much store by the lubrication predictions of spreading rates, however, as 
these rates are known to be over-predictions due to the presence of a precursor film in the 
model. Of greater concern is the difference in shape of the filament – the LBM profiles are 
rather less squat  than  the  corresponding  lubrication  profiles (this remains the case for  thinner   

 



 
Figure 2: Filament profiles calculated using the lubrication model. 

 

 
Figure 3: Filament profiles calculated using the LBM. 



 
Figure 4: Comparison of the predictions of the maximum height  

of the filament as a function of time 

 
Figure 5: Comparison of the predictions of the position of the  

maximum height of the filament as a function of time 

 

 

 



interfaces). This can be attributed to the fact that in the LBM the ambient fluid must be included 
in the simulation (in the lubrication simulations the ambient fluid is neglected). Moreover, the 
ratio of the fluid densities is rather limited, since instabilities can arise due to large density 
gradients across the interface. Using the present model, stable solutions could only be achieved 
with a density ratio of 20:1 or less. This is in fact the most serious shortcoming of the LBM as 
far as the simulation of coating flows is concerned, since a density ratio approaching 1000:1 is 
more appropriate to the liquid-air systems of interest.  

Progress has been made in this area, however, with the development of a high density-ratio 
model by Inamuro et al. [21], but this has not yet been successfully exploited independently. 
Other shortcomings of the LBM include the limitations on the lattice size due to the requirement 
that the interface thickness should be properly represented. Again progress has been made 
through the development of local refinement techniques [22] and the use of non-uniform lattices 
[23]. Another major concern, the stability of the LBM, has likewise been the subject of some 
development, and it has been shown that adopting a multiple-relaxation-time collision model 
rather than the simple one in equation (2) can greatly improve this aspect of the method [24].  
 
5 Conclusion 
The lattice Boltzmann method is an alternative flow simulation method with the benefits of a 
simple algorithm, making parallel implementation attractive, and the ability to include smaller-
scale physics than continuum-based simulation techniques. The method has been tested here on 
a simple droplet/filament spreading problem, and has been shown to capture the expected 
physical behaviour of the system. However, the predicted filament shapes are somewhat 
different from the corresponding predictions from lubrication theory. This is attributed to the 
necessary presence of an ambient fluid whose density cannot be reduced to a realistic value for a 
liquid-gas system due to stability restrictions. Achieving appropriate density ratios is obviously 
a major issue as far as coating flow simulation is concerned. While the LBM is perhaps not 
quite up to the challenge of accurate coating simulations just yet, it is a very rapidly developing 
technique that seems set to contribute to the whole spectrum of fluid mechanics. 
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