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     In addition to the long standing interest in thin films of liquid inside wedges as a result of 
capillary imbibition, there is recent interest in coating of liquids in rivulets for microfluidics 
applications. This article presents the study of capillary instabilities of liquids in wedges, a 
rivulet on a horizontal surface being a special case. We are interested in the nonlinear 
evolution process of breakup. As is well known [1], when a free cylinder of fluid is perturbed, 
surface tension induces a capillary pressure gradient which enhances the perturbation and 
causes instabilities. Potential for capillary instability exists for rivulets as well, provided the 
rest state is convex. However, in the rivulet case, contact lines are present and their dynamics 
couple to that of the fluid in a significant way.  
 

 
Figure 1. Photographs of a pearling process of a fluid strip on a partially wetting substrate [2]. 
 
    A recent experiment by Gonzalez et al. [2] investigated the evolution of a long strip of 
viscous fluid (silicon oil) sitting on a horizontal glass substrate under partial wetting 
conditions. Due to a local perturbation at both ends of the finite rivulet, a breakup process 
propagates from the extremes toward the strip center, as shown in Fig. 1. Eventually the 
liquid strip breaks into an array of droplets involving primary, secondary, tertiary and even 
smaller droplets. 
    Although there are analyses of the linear stability of rivulets [3,4,5], as far as we know, 
there is no nonlinear theory of such capillary instabilities with contact lines. Our main 
objectives of this work are to formulate the nonlinear problem, to explore the evolution 
process numerically, and to the extent possible, compare with the recent experimental results.  
    We consider a liquid meniscus inside a wedge of included angle 2! that wets the solid 
walls with a contact angle ". The meniscus has a convex interface which satisfies #/2< "+ ! < 
#. The quantity a(z,t) measures the distance from the wedge corner to the contact line formed 
by the intersection of the interface and the side wall. Of course the location of the contact line 
is not known in advance, which leads to a free boundary problem. As explained in [3], any 
dynamic contact angle model must be analytic in the speed. We adopt a model in which the 
instantaneous contact angle depends on the contact-line speed as 

0 tGa! !" # . 
Here "0 is the static contact angle and G is a constant of the model. The special case of G=0 
corresponds to a fixed-contact-angle and perfect slip condition. This dynamic contact line 
model together with a thin film equation whose derivation is given in the full paper, constitute 
a nonlinear system for the unknowns a(z,t) and ". The thin film equation has a clear physical 
interpretation: the cross section area changes in time due to the liquid flow driven by the 
capillary pressure gradient which in turn involves both transverse and axial curvature effects 
[6]. With scales derived from the linear stability theory, the dimensionless nonlinear system 
takes the following form: 
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Here A1, A2, E, F and Q* are known functions of " and !; A2,0, E0, F0 and Q*
0 are values of A2, 

E, F and Q* for "="0. The non-linear system is solved numerically for axially periodic 
boundary conditions using spectral methods.   
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Figure 2. Profiles of dimensionless a(z,t) for "0=#/4, != #/2 and G=0 at different times. (a) 
Primary instability; (b) Secondary instability; (c) Tertiary instability and suggestion of a 
fourth stage. 
 
    Figs. 2(a)-(c) give typical results, the curves showing the shape of the contact line for 
different times. The evolution occurs in three distinct regimes. Fig. 2(a) demonstrates the 
growth of the primary instability into the nonlinear regime. Notably, the liquid gathers into 
droplets while the central of the contact line becomes flat as shown for t=16.62. Fig. 2(b) 
shows the continuation of the evolution leading to a secondary instability: for 16.62<t<18.3, a 
bulge is formed in the center of the flat region and two secondary necks appear symmetrically 
beside the bulge. The further evolution is shown in Fig. 2(c): the secondary neck becomes 
flattened and a tertiary instability is initiated, generating two secondary bulges. The tertiary 
instability continues until a fourth instability stage originates, as suggested by the slight 
flattening and slight bulging near z=2.8, 6.2 in Fig. 2(c) for t=18.751. Thus capillary 
instability leads to a cascade of primary, secondary, tertiary, and presumably even smaller 
droplets, in qualitative agreement with similar phenomena observed in the experiment [2].  
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