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1. Introduction 

Perhaps the simplest way to produce a thin film is to deposit a layer of liquid onto a plate via 
withdrawal from a liquid pool. The physics of process is known as the drag-out problem or the 
Landau-Levich-Derjaguin (LLD) problem, after pioneering studies by Landau & Levich (1942) and 
Derjaguin (1943). The obtained prototypical dip coating flow is popular because of its simplicity, not 
only in laboratory experiments, but also in industry. Dip coating and related methods are sufficiently 
flexible to produce films on various geometries and can be applied to fluids with various properties. 

Most previous studies on this topic have assumed that the pool width l is infinitely large. For this 
“infinite” dip coating flow, most of the pool remains static, except in the small region near the plate, 
where the flow can be recognized inside the extremely curved meniscus viewed in the far field 
(Krechetnikov & Homsy 2006). 

In this idealized setup, Landau & Levich (1942) have derived the equation without gravitational 
drainage for slow substrate withdrawal: 
 
   (1.1) 
 
where hw is the film thickness, Ca = μus/σ is the capillary number, with us being the plate speed, μ 
being the fluid viscosity, and σ being the surface tension, and lc = (σ/ρg)1/2 is the capillary length. 

Despite the considerable literature on “infinite” dip coating flows, the results of those studies 
cannot be directly applied to many practical situations in which the pool is confined, such as coating 
on fiber (Quéré 1999) or laboratory experiments (Brinker et al. 1992). The infinite pool assumption is 
only valid in the absence of a stationary wall influencing the film thickness hw (i.e. hw ≪ l). 
Otherwise, the pool is confined. A confined pool can be achieved either via a small pool width l due 
to a small container or through large hw due to a fast moving plate on which a thick film is deposited. 
Note that an unconfined pool can become confined as Ca increases with increased film thickness. 
Under these conditions, l becomes the proper characteristic length. 
  



 
Figure 1. Schematic of confined dip coating system for (a) meniscus-controlled regime and (b) channel-
controlled regime. For the flow in the meniscus-controlled regime, i.e. the region excluding the regions close to 
the moving plate (I and II), the liquid is virtually stationary (III and IV). For the channel-controlled regime, the 
static pool disappears, the dynamic region (II) fills the channel, and the viscous stress transferred from the plate 
at high speed dominates the region inside the channel (IV). The dotted line in (b) represents the meniscus shape 
at the high-Ca limit. 
 

In this study, we investigate two clearly distinct flow regimes for confined dip coating: 
(1) the meniscus-controlled regime for low-Ca flow; 
(2) the channel-controlled regime for high-Ca flow. 
These regimes are shown schematically in Figure 1. Both regimes exhibit distinct scaling behaviors 
depending on the capillary number Ca. These behaviors can be predicted via a theoretical analysis and 
FE computations of the two-dimensional Navier-Stokes system of the confined dip coating setup. The 
results can be used to predict the film thickness hw entrained from a confined pool, which can be 
encountered in thin-film production in industry or in laboratory experiments. 
 
2. Dimensionless numbers 

The fundamental problem with regard to confined dip coating is determining the dependence of hw 

on the system parameters (l, us, and g), and the physical properties of the fluid (ρ, μ, and σ). 
According to the Buckingham π theorem, four dimensionless numbers are required in order to 
describe the flow system uniquely: the dimensionless thickness T, the dimensionless pool width L, Ca, 
and the material number m: 
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The Reynolds number Re can be deduced via linear combination of the above properties, (Re ≡ 

ρusl/μ = mLCa). Note that three dimensionless numbers are required in order to define an “infinite” 
dip coating flow uniquely (Tallmadge & Soroka 1969), and the newly introduced parameter l 



generates an additional dimensionless number L. In this study, we focus on an inertialess confined dip 
coating flow (m ≃ 0), where T is solely determined by Ca and L. 
  



 
Figure 2. Dimensionless film thickness T versus capillary number Ca for θc = 30° and various L. The curves of 
T overlap at L ≲ 0.5. 
 
3. Meniscus-controlled regime 

In the low-Ca limit, the entrained film is extremely thin, and ld ~ (hwl)1/2 is small. Therefore, the 
meniscus is predominantly covered by a static pool, which can be described by the Young-Laplace 
equation, and only a small part of the meniscus, close to the moving plate, deviates from the static 
meniscus. Unlike an “infinite” pool, the curvature of a static meniscus at the center point cannot 
vanish. Instead, the curvature has a finite value because of the confined geometry. 

Following Derjaguin (1943), we use the geometrical matching condition. For low Ca, the 
matching condition yields 
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where θc is the contact angle. The predictions from the FE computations support the above equations, 
as shown in Figure 2. 
 
4. Channel-controlled regime 

When us increases, the viscous force from the moving plate surpasses the capillary force in this 
high-Ca regime. In addition, the pressure force becomes minuscule compared to the viscous force 
without an external source, such as a pump. The momentum is transferred from the plate to the 
stationary container wall through the liquid inside the channel, and is completely absorbed. 

The flow inside the channel at high Ca resembles the coating flow under a knife or blade. The 
well-developed theory for the knife coating case shows that the film thickness is half the coating gap 
for a blade parallel to a moving plate under negligible surface tension (Ruschak 1985; Coyle 1997). 
Here, the gap is the distance between the moving plate and the blade face, which is essentially 
identical to l in the confined dip coating case. The knife coating theory predicts that the pressure 
gradient vanishes, which yields T ⟶ 1/2 in the high-Ca limit. FE computations support this 
prediction. T asymptotically approaches 1/2 as shown in Figure 2. 



  



5. Final remarks 
In this study, we analyzed the behavior of confined dip coating flows. Unlike the “infinite” dip 

coating case, the role of gravity in the force balance diminishes as the container wall is approached by 
a moving plate. Consequently, the characteristic length is no longer determined by the material 
properties, but by the pool width l. The confinement effects for a dip coating flow are strongly 
associated with the increasing importance of the newly-introduced characteristic length l in relation to 
the force balance. 

It is difficult to determine the Ca criteria for both regimes, because they depend on the 
dimensionless pool width L, as shown in Figure 2. However, when the gravitational effect vanishes (L 
≲ 0.5), ranges of Ca ≲ 0.1 and Ca ≳ 10 can be established for the meniscus- and channel-controlled 
regimes, respectively. 
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