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Dynamic wetting is a complex phenomenon that is influenced by fluid mechanics as well 
as molecular level physics.  While there is a consensus that a kinetic regime for dynamic 
wetting exists (Snoeijer 2013), there is not a clear consensus on the mechanism of the 
kinetics.  The molecular kinetic theory (MKT) of wetting (Blake 1969, Cherry 1968) 
assumes the rate of wetting is given by the transition state theory (TST) expression for an 
interface moving by jumps along the surface—but retarded by a friction force.  Blake and 
De Coninck (Blake 2011) introduce	the	idea	that	Kramers	moderate	to	high	friction	
model	of	escape	for	a	piecewise	parabolic	potential	(Kramers	1940)	may	apply	to	
kinetic	wetting.		However, molecular dynamics (MD) simulations (e.g. Thompson 1997) 
using Lennard-Jones potentials show a liquid interface that is essentially parallel to the 
solid interface having a mean velocity different from that of the solid (i.e., a region of 
slip) until the particles get close enough to the surface to feel the corrugations of the 
repulsive potential.   The topology of the MD model is more in keeping with fluid 
mechanical models for wetting. 
 
This talk compares qualitative features of four theories that might be used to model 
kinetic wetting: transition state theory, the theory of reactive fluxes, the high friction 
Kramers theory and a high friction stochastic model based on Sturm–Liouville theory.  
The qualitative behavior of these kinetics theories depends on the potential energy 
function that is assumed (which, in turn, depends on the general mechanism that is 
assumed).  These features are illustrated using two potential functions: the piecewise 
parabolic potential that gives rise to the TST theory result used in the MKT and a double 
well Mie potential that should be more appropriate for the mechanism seen in MD 
simulations.   
 

 
 

Figure 1 – Mechanism of dynamic wetting used for the MKT (left) and observed in 
molecular dynamics (right) 

Potential functions 



The most widely used approximation to the potential energy surface for a chemical 
reaction is the piecewise parabolic potential (PPP) approximation to a reactant well (near 
x=a), a barrier (near x=b), and a product well (near x=c)  
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Although discussions of the piecewise parabolic potential are often illustrated with 
continuous curves, the potential is only defined over two (1a, 1b) or three (1a, 1b, 1c) 
disjoint regions of the domain of the reaction coordinate x.  This constrains the 
asymptotic approximations to the rate constant in ways that affect the physical picture 
that emerges.  Nonetheless, this is the potential function on which most previous work 
has been based.  
 
Calculating the potential energy of a particle desorbing from a liquid interface and 
adsorbing on a solid interface is a nontrivial exercise (see Israelachvili, 2011 for a general 
discussion) that is physically complicated by the possible presence of an air layer 
between the coating and the substrate. However, the Mie potential (Mie, 1903)  
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with n=3 represents the asymptotic approximation to the full Hamaker formula for the 
attraction of a particle to a surface in the same limit that gives rise to the inverse sixth 
power dependence of the Lennard Jones used in most MD calculations and is sufficient to 
illustrate the physics.  Here z represents the distance from the interface.  For 
computational purposes, the potential between the two surfaces is taken as the sum of 
Mie potentials acting from two surfaces taken to be at x=+L.  The attractive terms are 
estimable from physics.  The repulsive terms each have two adjustable parameters that 
can be used to fit the well depth and the curvature of the well at its minimum.  The well 
depth at the liquid interface provides a connection with fluid mechanics since it is the 
energy of a molecule (or “particle”) at a liquid surface that is being stretched and thus is 
related to the dynamic surface tension. The well depth at the surface is the binding energy 
of a single molecule adsorbed on the surface which is clearly different from but related to 
the work of adhesion (the energy of a bringing a continuous layer to the surface).  A Mie 
double well is illustrated in figure 2. 

 



 
Figure 2 – Mie potential with n=3, m=9, Al=5, As =10, Bl=3, Bs=6 with the liquid surface 

at x=-L and the solid surface at x=+L. 
 
There are several significant features of the Mie potential.  Unlike the piecewise 
parabolic potential, the Mie potential is continuously defined over the physical domain. 
However, the Mie potential diverges at the two surfaces bounding the physical region of 
interest.  While the barrier looks parabolic for small separation, it is not well represented 
by a parabola for significant separation; thus finding a uniform approximation to the rate 
constant will be challenging. As the separation becomes large, the region between the 
surfaces becomes asymptotically flat (force free).  Because the “barrier” arises as a 
balance of two long-range attractive forces, the barrier height drops as the two surfaces 
approach each other and the maximum in the potential is shifted toward the shallower 
well. 
 
Reaction rate theories 
The intent here is to discuss qualitative features of four well-known rate expressions for 
passage of a Brownian particle passing over a barrier.  For derivations of the expressions 
and explanations of the theory see Hänggi et al (Hänggi 1990) or Schuss (Schuss 2013).   
 
The TST theory for the PPP assumes an equilibrium between “reactant” molecules 
(𝑥 ≈ 𝑎) and molecules at the top of the barrier (𝑥 ≈ 𝑏).  In terms of the potential (1), the 
transition state theory gives the rate of escape over the barrier as  
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This represents the maximum rate of passage assuming all molecules reaching the 
transition state pass over the barrier into the product state; however, the actual rate of 
passage may be less than the maximum rate by a “transmission factor” κ.  
 
Kramers (Kramers, 1940) presents three stochastic theories for escape from a potential 
well that are asymptotically valid in the limits of low, high and moderate values of the 
dynamical friction coefficient using a flux over population approach to estimate the rate 



constant in the three regimes for two potentials.  In the moderate to high friction regime, 
Kramers estimates the rate constant for the PPP to be 
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Here γ is a damping coefficient identified by Kramers as the viscosity and by others as 
the dynamical friction (that scales with viscosity).  This is the kinetic expression 
considered by Blake and de Connick (Blake, 2012).  In the limit of zero friction, this 
parabolic barrier Kramers theory (“PKT”) reduces to the TST result used in the original 
MKT, while in the limit of high friction (γ >> ωb) this asymptotically approaches the 
Smoluchowski result considered by Davitt (Davitt 2013) 
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(5) 
that was also given by Kramers (although previously derived by others as discussed by 
Hänggi). Because the viscosity scales with the dynamical friction coefficient, the high 
friction limit is consistent with the empirical observation that the speed of wetting is 
inversely proportional to the viscosity of the liquid.  This parabolic Smoluchowski limit 
(PSL) may work for the Mie potential at low separation; however as the separation 
becomes large, ωb goes to zero and (5) ceases to be useful. 
 
Although the Kramers theory has a stronger dependence on the shape of the barrier than 
TST, the details of the product well are as irrelevant in the PKT and PSL as they are in 
the TST.  Since the TST used in the MKT depends only on the curvature of the reactant 
well and the barrier height (activation energy), the observation that the contact line 
friction is best correlated to the work of adhesion, the mechanism for surface jumping 
sketched on the left side of figure 1 makes intuitive sense: if the activation energy scales 
with the work of adhesion, the reactant must be adhered to the surface.  However, as 
discussed below, other theories take the shape of the product well into account. 
 
While the TST and PKT are models for one way reactions (i.e., escape from a “reactant” 
well over a barrier), the “reactive flux” theory models the rate at which fluctuations 
(deviations from equilibrium) are dissipated.  Equilibrium involves a significant 
population of particles in both reactant and product wells and the theory tracks the rate at 
which particles move from well to well with a Heavyside step function θ (defined such 
that θ is zero in the reactant well and unity in the product well).  This theory can be used 
to model short-term dynamics; however, the result of current interest is the long time 
asymptotic behavior (e.g., Chandler 1982).  Over long enough time scales the fluctuations 
decay exponentially with a time constant τrxn given by  
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The rate of dissipation of a fluctuation is equal to the sum of the forward and the 
backward rate constants.  Thus, even for the TST and PKT, the shape of both the reactant 



and product wells affects the relaxation time. However, if one rate constant is much 
larger than the other, the faster rate process will largely govern the relaxation behavior.   
 
The final theory to consider is the Sturm–Liouville approach to solving Smoluchowski’s 
diffusion equation first proposed by Larson and Kostin (Larson 1978) and applied to Mie 
potentials with m=2n by Lightfoot (1985).  Details can be found in (Larson 1988). 
Because that theory is the source of the original insights being presented here, a bit more 
background is in order.  
 
In the limit of high dynamical friction the density of particles at any given point along the 
reaction coordinate is described by Smoluchowski’s diffusion equation (shown here for 
constant friction in dimensionless form):  
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The formal substitution 
 

𝑤 𝑥, 𝑡 =  𝑤!𝑔(𝑥)𝑒!!(!)𝑒!!" 
(8) 

defines the depletion factor g. Setting λ to zero and g to a constant gives the Boltzmann 
distribution for the probability of finding a particle at reaction coordinate x. In the non-
equilibrium case, variations in the depletion factor represent variations from equilibrium 
that govern the flux of particles.  The depletion factor is governed by the differential 
equation 
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(9) 
If the boundary conditions are of standard form, the problem becomes a regular Sturm-
Liouville problem. The first non-zero eigenvalue λ1 is associated with the rate constant. 
Higher eigenvalues are associated with intra well modes. For the general double well 
problem, the boundary conditions in each well become Neumann conditions (dg/dx=0) 
and the Rayleigh quotient  
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(10) 
can be used with an estimate of the eigenfunction accurate to order ε to produce an 
estimate the eigenvalue with an error of order ε2 (e.g. Lightfoot 1985).  For symmetric 
wells, symmetry guarantees g=0 at the mid point and the domain can be halved. 
 
The physical constraint that concentration cannot be negative puts a minimum bound on 
the coefficient of the eigenfunction corresponding to the equilibrium solution. An upper 
bound for the driving force is defined for the limit of zero concentration in the product 
well (not the transition state) while ignoring the intra well relaxation modes.  From 



equation (8) the constraint c>0 is equivalent to g > 0.  Since g1 changes sign the physical 
constraint requires g0 > -g1(x2); thus, the one way rate constant k+ is 
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(11) 
For symmetric potentials (e.g., Larson, 1978) k+ is one half the eigenvalue.    
 
In general, this two point boundary value problem cannot be solved exactly; however, the 
equilibrium solution is trivial and an asymptotic approximation to the eigenfunction 
corresponding to the first nonzero eigenvalue (g1(x)) when the wells are deep can be 
found (Lightfoot, 1985) using the method of dominant balance (Bender 1978). The key to 
this solution is to recognize that the eigenfunction corresponding to the first non-zero 
eigenvalue has exactly one zero on the domain of x (defined as x0).  The leading behavior 
is then given in terms of an asymptotically consistent approximation to the potential 
function    
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(12) 
For the symmetric case, g1 vanishes at the origin by symmetry; for the asymmetric case 
the point x0 is determined by the orthogonality condition on the eigenfunctions 
corresponding to the two lowest eigenvalues. The eigenfunctions of the Sturm Liouville 
problem are orthogonal when integrated over the range of x with the weighting function 
𝑒!!(!) in the sense that 
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gives a rigorous, if implicit definition of x0.  
 
Some care must be taken to apply (12) in an asymptotically consistent manner.  To 
identify the correct leading behavior of the solution only terms of comparable order 
should be kept.  In particular, if g1(x) varies over a narrow range of x, then the terms that 
are negligible over that range of x should be discarded.  On the other hand, terms that are 
significant over that range of x should not be discarded.    
 
This method is best illustrated using the potential defined in equation (1). Given the 
disjoint nature of the PPP, 1a, 1b and 1c give 𝑉 for the three regions.  The only 



meaningful limit assumes the barrier (1b) is high enough and remains parabolic over a 
sufficient range of x that the eigenfunction reaches asymptotically constant values that are 
extrapolated into each well. For deep wells, the orthogonality condition is dominated by 
the integrals in the wells and the asymptotic limits for the eigenfunction come from the 
barrier region by extending the integrals from a to -∞ and from c to ∞.  The integrals can 
then be expressed in terms of complementary error functions and x0 can be found from 
the orthogonality condition.   
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(14) 
If the problem is symmetric then Va = Vc and ωa= ωc and x0=0 since erfc(0)=1.  However, 
asymmetric double wells can give x0=0, if  
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(15) 
Remembering that V is a dimensionless energy =E/kBT, if the deeper well is also flatter 
there will be a unique temperature for which x0=0.  Although the zero of the 
eigenfunction is often not at the top of the barrier, after considerable algebra the Rayleigh 
quotient reduces to 
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This is as predicted by the theory of reactive flux for the PSL.  The ratio of the 
asymptotic values in the two wells is 
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(17) 
which can be substituted into (7) to reveal that the one way rate constant reduces to the 
PSL result (5).  Note that k+ is expressed in dimensionless form while k in (5) is not. 
 
The significance of this is its consistency with previous work and documenting the 
assumptions needed to derive it. Substituting (12) substituted into (10), x0 does not enter 
into the numerator and only affects the denominator of the if nonzero x0 leads to 
variations in g1 in the wells.  Because of the disjoint definition of the potential function 
and the assumption that the eigenfunction is assumed constant in the wells, although the 
values are different; the approximate eigenfunction is as binary as the Heavyside step 
function used in the theory of reactive flux.   
 
Turning to the Mie potential, the only known formulae for escape rates from Mie 
potentials (Lightfoot, 1985, Larson, 1988) are for the special case of m=2n (Lennard-
Jones type potentials) with well depth (C=E/kBT)>>1 but at a large enough distance from 
the surface that CL-n<<1.  Accurate evaluation of the asymptotic series given requires 



some subtlety; however, the basic physics can be illustrated by taking the first term in the 
series.  For both the Kramers approach and the Sturm-Liouville approach, the rate 
constant for escape with g(L) set to zero is approximately 
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(18) 
The rate constant exhibits the normal Arrhenius dependence; however, the pre-
exponential factor has an unusual dependence.  As L becomes large, the rate of escape 
goes as 1/L – consistent with the picture of most of the molecules being in the well and 
the few in the flat region of the potential diffusing at a more or less steady state between 
the well and L; however, the effect of the well on the pre-exponential term is negative—
the reactant well essentially giving the particles a “head start” in diffusing away from the 
surface. The deeper the well, the higher the pre-exponential term.  The effect of the 
activation energy is discussed below.  
 
The Kramers approach to predicting the rate constant involves finding a pseudo-steady 
state concentration and flux.  If the separation is large enough that that the two wells do 
not interact, the eigenfunctions for the single well problem (that disappear at x=L) might 
be adaptable for the double well case; however, the point x0 would not necessarily be 
expected to fall at the origin (see equation (14) for the PPP) but can be estimated from 
(13).  However, there are other cases of interest in looking at the double well Mie 
problem.  If the mechanism of dynamic wetting is as revealed by MD simulations 
(sketched on the right hand side of figure 1), the liquid and solid interfaces begin at large 
separation and with relatively deep wells would exhibit exponentially small rates of mass 
(and momentum) transfer described qualitatively by equation (18).  However, as the 
interfaces approach each other, the separation may not be sufficient to warrant the 
assumption CL-n<<1 used to derive (18).  As the interfaces get yet closer, the barrier gets 
lower and the deep well assumptions may no longer be reasonable.  As the wells get 
shallower, the rate of motion may no longer be exponentially small and the majority of 
the mass transfer may come when the two interfaces are close together.  Although there 
are many tools for developing asymptotic solutions in these various cases, the prospect of 
finding a simple formula that applies uniformly across the regimes seems remote. 
 
The simplest way to look at the physics of a Mie double well at low separation is 
numerical solution to (9).  Figure 3 shows numerical result for x0 for the 3-hard sphere 
potential (i.e., numerical approximations for g1 for 𝑉 𝑥 = 𝑉 𝑥 ) with the liquid and 
solid surfaces at x =-2.5 and +2.5.  Remembering that the maximum of the potential is 
skewed toward the shallower well, the distance Δ between the maximum and x0 is 
considerably larger than x0 and is shown in figure 4.  This would further skew the effect 
on the pre-exponential term in (18), however, if x0 falls in the deeper well, the activation 
energy is also reduced.  Comparing the magnitude of x0 to L in figure 3 it is clear that x0 
falls in the well representing adsorption to the solid surface.   
 



     
Figure 3 - Zeroes of the eigenfunction g1 for the 3-hard sphere potential with As=rAl and 
the liquid interface at x=-2.5 and the solid interface at x=2.5. 
 

 
Figure 4 – Distance between the maximum and xo for the same potential as Figure 3. 
 
Summary 
The MKT is a concise theory given in terms of measurable properties that provides the 
best correlation to data on kinetic wetting available today (DuVivier 2013).  The 
molecular mechanism used in the MKT is suggested by TST and any other theory that 
relies on the activation energy being the difference between the bottom of the reactant 
well and the top of the “barrier” since, as seen from the theory of reactive fluxes, the 
fastest one way rate constant should dominate the overall relaxation rate.  Nonetheless, 
the molecular mechanism assumed in the MKT is in conflict with MD simulations.  The 
Sturm-Liouville approach to solving Smoluchowski’s equation shows two mechanisms 
by which the attraction to the solid interface can accelerate the rate constant for the 
backward reaction (an increase in the pre-exponential factor and a decrease in the 
activation energy as x0 moves closer to the surface) provided the mechanism of wetting is 
as shown from MD simulations.  However, while Sturm-Liouville theory shows promise, 
much work remains to be done before it provides a useful correlation.  
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