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Introduction 

When a coating film thins and dries through solvent evaporation, unwanted perturbations can 
lead to thickness imperfections in the dried film, or even worse, film de-wetting. Sources of 
unwanted perturbations are the thermocapillary or solutocapillary flows that arise due to surface 
tension gradients, the so-called Marangoni instability. In most circumstances film flow and 
drying are coupled, such that disparate time scales dictate the fate of film dynamics associated 
with solvent mass flux from the drying film, versus the various diffusion processes within the 
thinning film (momentum, thermal and molecular). A limiting case that has been studied 
frequently is the quasi - static limit. In this limit the evolution of the liquid film (due to solvent 
evaporation) is sufficiently slow that its variation with time can be neglected relative to 
exponentially growing perturbations superimposed on the base state. In this presentation we 
investigate circumstances in which the quasi-static limit is not valid. A thin film analysis is 
outlined and evolution equations for the film thickness and the surfactant/polymer concentration 
are derived and analyzed by the techniques of linear stability and numerical simulation. The 
developed theory describes the competition among the various instabilities (thermocapillary and 
solutocapillary) and their coupling. We consider two example problems: (i) the mechanism for 
instability due to soluble surfactants, and (ii) the thermocapillary instability when flow and 
drying are intimately coupled (as occurs in spin coating). Criteria for the onset of Marangoni 
instability are presented and where possible theoretical predictions are compared with 
experimental data. We conclude our presentation with overview of other coating scenarios where 
such instabilities might be important.   
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Analysis 

 We consider a thin liquid film of initial thickness h0, resting on a flat solid substrate. The liquid 
is a simple fluid with constant properties and is evaporating slowly at a constant rate E 
determined by a mass transfer process in the overlying gaseous phase. The film is thin enough to 
neglect the effects of gravity, yet thick enough so that molecular forces and disjoining pressure 
can also be ignored. It is further assumed that temperature differences developed due to the 
evaporation are insignificant and can be also ignored. 

What we consider in detail and place emphasis upon are the effects of a surfactant which is 
soluble in the liquid. So part of it remains in the bulk and part of it is distributed along the 
liquid/gas interface. As the liquid is lost by evaporation, the surfactant concentration increases 
both in the bulk and at the interface. The relative rates of increase depend on surfactant solubility 
and on the kinetics of exchange. To make matters simple, it is assumed that the kinetics of this 
exchange is fast so that equilibrium between the two concentrations prevails at all times. 
Moreover, we consider the dilute limit so that a linear isotherm can be assumed. Finally, we 
assume that surfactant diffusion across the thin film is fast enough so that it is essentially 
uniform in the thin film dimension. Our analysis for the flow and surfactant transport is in the 
context of the lubrication approximation. Details are provided elsewhere, see Yiantsios and 
Higgins (2010). The analysis leads to a nonlinear evolution equation for the film thickness, that 
is non-autonomous in time. A linear stability analysis reveals that the evaporating film can 
become unstable. The instability is confirmed by a numerical simulation of the nonlinear 
evolution equation. 
 

Sample Results 

   Figure 1 shows the largest eigenvalue ω as a function of wavenumber α for various values of 
Marangoni number M and the dimensionless surface viscosity S. We verify analytically that the 
eigenvalue asymptotes to 1/(1+β) for very small wavenumbers, which implies a neutral state 
according to linear theory (β is the dimensionless partition coefficient for the surfactant). 
However, for small β there is a range of wavenumbers where the eigenvalue exceeds the rate of 
change of the base concentration. The maximum eigenvalues increase as M increases but much 
less that proportionally to it. When the parameter S is one (dashed lines) the rates of change 
decrease in absolute value, indicating that surface viscosity slows down the dynamics.  In 
Figure 2 the shape of the interface as evaporation proceeds is shown together with the 
corresponding bulk surfactant concentration distribution along the film for M=10. As may be 
observed, short wavelength initial perturbations in the thickness are quickly leveled out due to 
the action of capillarity and diffusion. However, longer wavelength perturbations persist and 
gradually increase in size as evaporation proceeds. Concentration non-uniformities develop and 
the maxima correspond to the points of minimum film thickness. For M equal to 10 the film 
thickness non-uniformities increase only imperceptibly. However, calculations for M equal to 
100 the thickness non-uniformities increase significantly and for M =1000 the instability is 
strong enough so that at some points the thickness eventually increases despite the overall 
thinning due to evaporation. 
   In the presentation we will also discuss the thermocapillary instability when flow, drying and 
chemical reaction are intimately coupled (as occurs in spin coating and photopolymerization). In 



these examples the base state is time dependent and the competition between various time scales 
determines the fate of the instability.    
 
Conclusions 

A new mechanism of Marangoni instability in evaporating thin films due to soluble surfactant 
has been presented and analyzed in this study. As the films thin due to evaporation, thickness 
perturbations lead to surfactant concentration and, hence, surface tension perturbations, which in 
turn drive the instability and tend to enhance uneven film drying. According to the present 
analysis, for the instability to be observed an appropriate Marangoni number has to be relatively 
large and the surfactant solubility in the bulk to be large as well. Estimates of the relevant 
parameters suggest that such conditions may be met in relatively thick films, on the order of tens 
of microns, for which the effects of molecular forces and disjoining pressure are not dominant. 
Diffusion of the surfactant and its effect on interfacial mobility tend to suppress disturbance 
growth, although their effects are not likely to become significant, unless the films are much 
thinner, i.e. on the order of one micron or below. Three-dimensional simulations showed that the 
surface irregularities induced by the instability are not correlated. This suggests that the 
instability might be a way to induce surface roughness onto a film. Such surface roughness may 
have implications for light scattering features of the film, wetting and adhesion properties of the 
film. 
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Here the effects of diffusion have been also ignored. We
assume that ML!−2 is a small parameter and expand the
thickness and concentration in terms of it, i.e.,
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The former equation suggests that a perturbation in thickness
remains unchanged in amplitude and the latter that the ini-
tially uniform concentration increases but at rates which are
higher near the points with smaller thickness. Moreover,
these changes in concentration are more significant for small
". As mentioned before, the fast kinetics of surfactant ad-
sorption means that the interfacial concentration becomes
larger at the same points as in the bulk, namely, at the de-
pressions. Those points will then have the smallest surface
tension and tend to thin further as fluid is pulled toward the
elevations.
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which reflects the effect of Marangoni stresses on film mo-
tion. If
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The above equation suggests that the perturbation h1 inten-
sifies, since it has a positive rate of change at the elevations
where it is positive and the curvature is negative, and a nega-
tive rate of change at the depressions where it is negative and
the curvature is positive. The growth rate of the perturbation
is algebraic and its initial dependence on time is quadratic.

The predictions of the above asymptotic analysis
agree quantitatively with numerical simulations of the
full equations, starting with a simple sinusoidal perturbation
of amplitude 0.01 and wavenumber $=0.005 %i.e.,
f!x"=0.01 sin 0.005x&, as can be seen from Fig. 3.

FIG. 2. !Color online" The larger eigenvalue as a function of wavenumber
for M =10, 100, and 1000. !a" "=0.01, !b" "=0.1, !c" "=1. Solid lines are
for S=0 and dashed lines for S=1.
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Figure 1: The largest eigenvalue as a function of wavenumber, for M =10, 100 and 1000. (a)  
β = 0.01 Solid lines are for S = 0 and dashed lines for S = 1. 
 



IV. NUMERICAL SIMULATIONS

An algorithm based on finite differences was developed
to obtain solutions of the full nonlinear equations. In the
numerical formulation, periodic domains were considered.
The film thickness, surfactant concentration, and interfacial
velocity were discretized into equally spaced segments and
their spatial derivatives were expressed in terms of central
finite differences. The film thickness and concentration at
each discretization point were advanced in time by an ex-
plicit fourth-order Runge–Kutta procedure. Although this ap-
proach is taxing on the time step, which has to be of O!!x4",
it is straightforward and simple to apply. However, a sophis-
ticated implicit approach !i.e., as in Oron29" that would place
less stringent requirements on the time step could be also
applied. At each time step and level of the Runge–Kutta
procedure the interfacial velocity is required. This is ob-
tained from the solution of Eq. !47a", which in the dis-
cretized form results in a cyclic tridiagonal linear system.
The latter can be efficiently solved directly in a small num-
ber of operations. Temporal and spatial resolutions of the
algorithm were tested and found to be satisfactory.

A. Two-dimensional simulations

Numerical simulations were performed in a periodic in-
terval with length equal to 20", which corresponds to a mini-
mum wavenumber of 0.1. A random perturbation to the ini-
tial film height was introduced, with maximum amplitude
equal to 0.02, while the initial surfactant concentration in the
bulk was taken to be uniform. In the following figures the
shape of the interface as evaporation proceeds is shown to-
gether with the corresponding bulk surfactant concentration
distribution along the film.

Figures 4–6 examine the influence of the Marangoni pa-
rameter. As may be observed, short wavelength initial pertur-
bations in the thickness are quickly leveled out due to the
action of capillarity and diffusion. However, longer wave-
length perturbations persist and gradually increase in size as
evaporation proceeds. Concentration nonuniformities de-

velop and the maxima correspond to the points of minimum
film thickness. For M equal to 10 the film thickness nonuni-
formities increase only imperceptibly. However, for M equal
to 100 the thickness nonuniformities increase significantly,
and for M =1000 the instability is strong enough so that at
some points the thickness eventually increases despite the
overall thinning due to evaporation.

Figures 6–8 examine the influence of the solubility pa-
rameter #. As # increases, which means that the surfactant
becomes less soluble in the bulk, the intensity of the phe-
nomena decreases. Thus, for # equal to 1 the thickness
corrugations appear to remain unchanged after a short time
interval where capillarity and diffusion level out the rela-
tively short wavelength parts. The above observations are in
agreement with the linear stability results.

B. Three-dimensional simulations

A few three-dimensional !3D" simulations were also per-
formed. In this case the equations remain similar in form,
with the derivative in x being replaced by the horizontal
gradient operator, !II= !" /"x"ex+ !" /"z"ez. Thus, when the
effects of surface viscosity are ignored we have
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FIG. 3. !Color online" The change in amplitude of an initially small sinu-
soidal perturbation of wavelength 0.005 as a function of time. Dots represent
numerical simulations and solid lines represent the asymptotic result
%Eq. !60"&.

FIG. 4. !Color online" Contours of !a" film thickness and !b" concentration
at successive time intervals of 0.1 dimensionless units. M =10, #=0.01,
S=1, Peb=1, Pes=1. Time progresses in the direction of the arrow.
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Figure 2: Contours of film thickness (a) and concentration (b) at successive time intervals of 0.1 
dimensionless units. M = 10, β = 0.01, S = 1, Peb= 1, Pes = 1. Time progresses in the direction of 
the arrow. 


