Thin film models for quantum dot structures in solid films
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Background and Introduction

Epitaxial growth of self-organizing nanostructures (“quantum dots) from a thin solid film demonstrates
fascinating patterning, and the geometrical structure of the growing solid film has intrinsic interest [1].
However these nanocrystals can also be very valuable for industrial applications, because their
semiconducting properties make them useful for electronic and optoelectronic devices, such as blue laser
diodes [2]. The photovoltaic industry hopes to incorporate the structures—called “artificial atoms”
because of their discrete energy states—inside new thin layers in order to increase thermodynamic
conversion efficiency [3]. For widespread applications, comparatively cheap, but controllable self-
assembly growth processes are desired.

In a typical process, atoms of germanium are deposited on top of a silicon substrate in a hot chamber, and
after a pseudomorphic growth phase the Asaro-Tiller-Grinfeld (ATG) instability leads to formation of
small, initially round, structures (“pre-pyramids”) [4]. These later transform to pyramids, the quantum
dots. Further deposition can lead to multi-faceted domes and eventually introduce dislocations that cause
the quality of the quantum dots to deteriorate.

A main mechanism for the growth is the misfit strain arising from lattice mismatch. The film and
substrate are crystalline materials with differing lattice constants. From a bare substrate, a film initially
grows uniformly (“layer by layer growth”), its lattice straining to that of the substrate, inducing elastic
energy that competes with surface energy. As the film thickness increases, strain energy is released by the
formation of quantum dots, while wetting effects ensure film material covers the entire substrate. This is
the Stranski-Krastanov growth mode. During growth both materials elastically deform and the observed
dots initially form rounded pre-pyramids. Anisotropy is responsible for pyramidal shapes or multi-faceted
domes that are visible at later times. We consider only the anisotropy of the surface energy, though in
principle anisotropic elastic properties may also be significant.

Stochastic methods that act on atomic scales are limited to small domains with few dots. To treat larger
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domains for longer times, we use a continuum model based on the concept of surface diffusion [5].
Spencer and co-workers derived similar partial differential equations without wetting or anisotropy e.g.
[6]; later work has included these to differing extents [7, 8, 9, 10]. However, for simulations of reduced
models the important effects of stress and wetting were neglected. Finite element methods allow for the
solution of the Navier-Cauchy equations in the elastic substrate in three dimensions but are
computationally intensive. To avoid the high computational costs, a small slope approximation similar to
lubrication theory for liquid films is applied.

Model overview

We consider the dislocation-free evolution of a thin solid film on a substrate as sketched in Fig. 1. The
film-substrate interface is at z=0, and the film surface is at z=h(x,y,?) at time ¢ and location (x, y) in the
periodic spatial domain. In the absence of deposition the film evolution satisfies

h, =D V(1 + |grad &) laplacian(y)

with the diffusion constant D = Q* Ds o/(k T) (Mullins [M57]) . Here p(x, y, ) is the chemical potential at
the free surface of the film, Q is the atomic volume, o the surface density of atoms, Ds the diffusion
coefficient, k£ the Boltzmann constant and 7 the absolute temperature. Following Tekalign and Spencer
[10] we consider a chemical potential p that consists of two terms

n= Egeqd + Equrr

representing the competing contributions from elastic and surface energies, respectively. The first term is
the strain energy density evaluated at the surface Esq = Xj=123 [(1/2) oy €;].-» with the stresses o; and
strains ¢; related by Hooke's law. A standard solution for the elastic response of a semi-infinite solid
subjected to a point force allows computation of Eeq. The surface free energy y(4, grad /) is assumed to

depend on orientation in addition to film thickness. The total surface energy Eq. is found by taking the
functional derivative

Eeut = (8/8h)] y(hhyhy) S = —yK + Evet + Eanis.

where « is the mean free surface curvature. It can be decomposed into three components including surface
energy, wetting potential, and an additional term due to the anisotropy of y. After model reduction
assuming small slopes, the resulting evolution equation for the surface profile % is quasilinear and of
fourth order, with a non-local contribution due to Ec.
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Fig. 1: A quantum dot forming on a substrate and the coordinate system used.



Results

Linear stability analysis shows that a flat film of thickness H is unstable over a range of finite
wavelengths, when H exceeds a critical thickness. Furthermore, anisotropy acts to destabilize the surface.
It lowers the critical height at which flat films become unstable due to wetting interactions, and there
exists an anisotropy strength G above which all thicknesses are unstable (Fig. 2). A spectral numerical
method is used to perform simulations in two and three space dimensions. In a typical simulation a film
which is nearly flat evolves to form small “islands” or pyramids separated by a thin wetting layer; at
longer times the smaller of these loses material to the larger via the wetting layer, resulting in coalescence
as a single pyramid (Fig. 3). When anisotropy is included our simulations clearly show faceting of the
growing islands (Fig. 4) and a power law coarsening behavior [11].
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Fig. 2: Dispersion relation for the isotropic (G=0) and the anisotropic cases G=0.05 and G=0.15 with H =
0.8, where k& = 2n/A is the wavenumber. Close-ups show the wavenumber regime near the minimum
growth rate [11].
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Fig. 3: Collapse of a Ge/Si quantum dot. Lighter shades correspond to larger film thicknesses. The initial
condition for these two islands was two rounded Gaussian humps. These first evolve into faceted
structures before the bigger dot “eats” the smaller one and survives. Here G=0.2; time and space are in
dimensionless units [11].
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Fig. 4: Anisotropy effect on the Ge/Si system. Each picture shows the film at the same time after
evolution from the same initial condition (random perturbation of a flat state). The upper left shows a
simulation with isotropic surface tension (G=0) and the dots have round tips. In the other two upper
pictures (G=0.1 and G=0.25) we observe faceting which is stronger for the bigger anisotropy coefficient
G. Lower pictures are perspective views of subregions of the domain, showing the transition from bell
shapes (G=0) to pyramids (G=0.25) [11].



