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Spreading of oils and water on porous model carbonate coating structures was studied with high speed video 

imaging. The results indicate a strong dependence between surface structural features of the pigment tablets and 

spreading of water at short times, while the oil spreading mainly depends on the liquid properties. With the 

exception of water, majority of results support spreading according to the molecular kinetic model. The evidence 

supports the hypothesis that at long times the oils absorb into the porous structure at a rate proportional to the ratio 

of surface tension and viscosity, provided there is no sorptive action with the binder. A combination of nanosized 

pores and high permeability is useful for providing high absorption capability for carbonate based coatings. 

 

Introduction 

 

Liquid–solid interactions are important for numerous natural and industrial processes in agriculture, coating, 

filtration, painting and printing. Understanding the effects of sequential absorption of oil components and water, in 

various arrangements, on porous coatings during the very short time it takes for a paper to pass through a printing 

machine is a prerequisite for a successful printing operation. Phenomena in the printing nip occur under far from 

equilibrium conditions, and therefore the interactions of liquids with the coating should also be studied in 

nonequilibrium conditions. 

When a droplet of liquid is placed on a surface its spreading is controlled by the balance of driving and 

resisting forces. The driving force for initial impact spreading is kinetic energy of the droplet, whereas flow 

resistance is provided by viscosity and surface tension of the liquid. As the kinetic energy of the impact dissipates, 

the wetting forces become important. Spreading of a liquid on a specific solid surface is also influenced by chemical 

heterogeneity and surface topography. On porous surfaces, the spreading mechanics is further complicated by 

capillary absorption into the porous structure.  

Numerous studies have investigated both droplet spreading on non-porous surfaces and liquid absorption into 

porous structures [1–8]. Simultaneous spreading and absorption has not received as much attention. Computational 

modeling of liquid spreading and sorption on a porous surface utilizing lubrication approximation has been done for 

example by Davis et al. [9] and Alleborn and Raszillier on thick [10] and layered [11] substrates. Volume-of-fluid 

method has been used to study the droplet impact spreading and absorption on horizontal and inclined solid surfaces 

[12], over saturated pores [13] and on topographically irregular surfaces [14].  
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Hydrodynamic theory and the molecular kinetic model have been contrasted to explain the behavior of an 

advancing droplet edge after initial inertial spreading of a droplet [15–20]. The molecular kinetic model suggests 

that the wetting line moves as the individual liquid molecules interact with the solid at the three-phase zone.  

Hydrodynamic theory on the other hand proposes that the droplet spreading is controlled by an energy balance 

between the capillary driving force and the hydrodynamic resistance to spreading.  It has also been suggested that 

these two theories would co-exist at different time scales [18]. The droplet kinetics can be followed by measuring 

the contact diameter of the droplet on the surface.  A power law type of behavior is seen in log/log plots of the 

contact diameter as a function of time. The scaling of the contact diameter is D~t
1/2

 for the inertial regime, for the 

capillary regime right after that D~t
1/10

 according to the hydrodynamic theory, and D~t
1/7

 according to the molecular 

kinetic model. 

The main objective of this work is to understand the short time interactions of offset ink oils and water with 

calcium carbonate pigment coating structures, with a specific application to offset printing of pigment coated paper. 

 

Materials and Methods 

 

In offset printing, mineral oils and linseed 

oils are typical components of inks, and 

water is used in so-called fountain solution. 

Properties of the liquids and experimental 

parameters are given in table 1. 

Porous pigment tablets which mimic 

pigment coating structures were prepared by 

pressure filtration of pigment suspensions 

according to [21].  Three pigments were 

used, two ground calcium carbonates 

(Hydrocarb ME, OMYA Inc.): one with 

broad (BCGCC: 60 wt% < 2 μm) and one 

with narrow (NCGCC: 65 wt% < 1 μm) 

particle size distribution. The third pigment 

was a modified porous calcium carbonate 

(MCC) which creates discrete bimodal pore 

structures promoting rapid liquid uptake [22]. 

Ten parts of styrene acrylate latex (Acronal 

S360D, BASF) per hundred parts by weight 

of pigment was used as binder. Pressure-

filtrated tablets were oven dried at 60 °C for 

24 h after which samples were cut and 

polished to expose tablet centers. Optical 

calcite (Iceland Spar, Mexico) crystals were 

used as a model of solid, non-porous calcite 

surface. Sodium polyacrylate dispersant 

(Topsperse GX-N, Coatex SA, Genay, 

France) was adsorbed onto the calcite crystal 

surface as described in [23] 

Pore structures of the tablets were 

characterized by mercury intrusion 

porosimetry (Pascal 140 and Pascal 440, 

Thermo Electron S.p.A., Milan, Italy). 

Figure 1 shows the pore size distributions 

and table 2 the pore space structural 

parameters. Darcy permeability was 

measured by pressure filtration following the 

method described in [24].  

Droplet spreading and absorption was 

imaged at ambient conditions (Temperature 

24 ± 2 °C, RH 25-30 %) with a high speed 

Table 1. The physico-chemical properties of the liquids. 

 
 

 

Table 2. Pore space characteristics of the pigment tablets. 

 
 

 
Figure 1. Poresize distributions of tablet structures. 



camera (Citius C100 Centurio, Citius Imaging Ltd., Finland) positioned on the same plane as the droplet base at a 

grazing angle of 3°, 11 cm from the droplet center. Contact angles (left/right), volume, and contact diameter of a 

droplet as a function of time were extracted from the image sequences using ImageJ and a customized version of the 

DropSnake [25] plug-in. 

 

Results 

 

Mineral oil, linseed oil and water droplets 

were placed on the three porous pigment 

tablets, and the absorption and spreading of 

the droplets was imaged in time. The times for 

complete absorption are given in table 3. The 

absorption is fastest into the MCC structure 

and slowest into BCGCC. The fast absorption 

into the MCC is due to the discrete bimodal 

pore size distribution which combines high 

capillary forces with high permeability. Absorption into BCGCC structure is slightly slower than that into the 

NCGCC, apparently because of the lower permeability of the former. When comparing the different liquids, the 

absorption speed into the porous structures is fastest for the mineral oil and slowest for water, with the exception of 

the BCGCC structure, into which linseed oil absorbed slowest. 

On a porous surface, spreading and absorption of the droplet occur simultaneously. Figure 2a shows 

representative image sequences for water droplet behavior on the three porous structures. One main observation is 

that at short times, the surface spreading dominates over the absorption as the droplet volume losses into the tablet 

structures were always less than 5 % at time t = 2 s. Complete absorption occurs at much longer times (table 3).   

Figures 2b-d represent  the spreading behavior by plotting the droplet contact diameter in time. It appears that 

there is only a minor influence of the porous structure on the spreading behavior of the mineral oil and linseed oil. 

Spreading is faster for mineral oil as expected from its lower viscosity.  The change of slope in the figure 2b at 

t = ~0.01 s indicates a transition from inertial spreading to spreading driven by capillarity. The transition cannot be 

          
 

  
Figure 2: (a) Water droplet spreading and absorption on porous pigment tablets, contact diameters of (b) mineral 

oil, (c) linseed oil and (d) water on porous pigment tablets and (d) untreated and polyacrylate treated calcite surface. 

Table 3. Liquid absorption times into porous tablets. 

 

a) b) 

c) d) 



observed for linseed oil (figure 2c) due to its high viscosity, which dampens the inertial effect of the falling droplet.  

The spreading behavior of water differs from that of the used oils. Figure 2d plots the contact diameter of water 

droplets on the three porous structures together with data for droplets on non-porous smooth calcite surface. The 

droplet spreading on non-porous surface is clearly faster than that on the porous surfaces, where the advancing 

liquid front is frequently pinned by the surface roughness. The Na-polyacrylate dispersant slows down the droplet 

spreading slightly. The change from inertial spreading to capillary regime can easily be seen in the curves. The slope 

of the capillary phase spreading curve depends on the pigment used. Tablets BCGCC and NCGCC behave initially 

very similarly but start deviating from one another at around t = 200 ms, and the MCC curve is steeper throughout. 

The surface features of BCGCC and NCGCC are larger compared to MCC, and thus the motion of water is slower 

on these pigments as the water front needs to overcome larger surface features and fill up larger surface pores in 

order to move forward. 

The results can be related to the hydrodynamic and the molecular kinetic theories, when plotting the contact 

diameter and the time in a log/log-graph and studying the respective slopes. The curves in figures 2b-d can be 

divided into two distinct regions, the first one being the inertial regime. On these porous surfaces using the three 

liquids: mineral oil, linseed oil and water, the slope in the inertial region was n = 0.34 ± 0.04. The results agree with 

the work of Bliznyuk et al. [18] in that the duration of the inertial regime was of the order of a few milliseconds and 

that for more viscous linseed oil the inertial regime was even shorter. The surface porosity certainly affects the 

results as well, and it is suggested to be the cause of the slightly smaller value than that originally proposed by 

Biance et al. [4]. For the solid calcite surface included in figure 2d, the slope is n = 0.71. The addition of sodium 

polyacrylate on the surface reduces the slope to n = 0.61. The strong interaction of water with both the calcite and 

sodium polyacrylate might provide a partial explanation for larger than 0.5 slope which is expected for purely 

inertial spreading. A supporting conclusion of higher slope being due to increased interactivity of water contacting a 

hydrophilic surface is found in the work of Drelich and Chiboswka [19] and Wang et al. [5]. Sodium polyacrylate is 

known to give an additional hygroscopic character to a surface. The later capillary stage of the curve shows that the 

water droplet does not spread as far on the sodium polyacrylate covered calcite indicating support to the retarding 

effect of the dispersant. Analyzing the capillary regime, starting from approximately 6 ms to the final 2 000 ms, for 

the oils, the slopes are of the same magnitude as predicted by the molecular kinetic model, 1/7 or 0.14. For the water 

droplet, the structure of the surface with a range of topographies, roughness and porosities is dominant after the 

inertial regime, and the molecular kinetic theory does not seem to apply. 
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