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Unsteady numerical modeling of the Landau-Levich plate withdrawal problem is presented. A disjoining-

conjoining term is included in the evolution equation to simulate a lack of perfect wetting. Depending on

the speed of withdrawal and the equilibrium contact angle, computed results show that various regimes are

possible, as can be commonly observed in industrial practice. For very slow withdrawal, the meniscus will

meet the plate at close to the static contact angle and the withdrawn plate will be dry. There is a somewhat

faster range of speeds for which the calculated dynamic (receding) contact angle will be reduced from the

static value, while the plate still remains dry. The extent of this ”hysteresis” region depends on the degree of

imperfection of the substrate. Physically rough and chemically comtaminated substrates are both considered.

At higher speeds, the plate will be withdrawn with a wet coating layer whose thickness is close to the Landau-

Levich prediction. Depending on the nature of the intermolecular forces, the liquid layer may subsequently

break up into discrete droplets before it dries.

We explore effects of finite contact angle on the bath withdrawal problem. Here, for simplicity,

only two-dimensional simulations are presented. For liquids with good wetting properties, e.g.

machine oil on steel, minor imperfections in the substrate will not change flow behavior in dip

coating. For poor-wetting liquids, that is liquids that want to“ball up,” imperfections will have a

strong effect on flow.

We consider a substrate moving upward, out of a liquid bath, at constant speed U (in the +x

direction). An evolution equation for the wetting film thickness h(x, y, t) is

ht = −Uhx −
σ

3µ
∇ ·

�
h3

�
∇∇2h

��
+

σ

3µ
∇ · [F (x, y)Π] . (1)

Had gravity drainage back into the bath been considered as well, a term
ρg
3µ(h3)x would need to be

appended on the right side of (1). For a plate that is being withdrawn continuously, gravity drainage

is less important than the effects retained. The first of the three terms on the right of (1) is the

time rate of change of the coating thickness due to the plate motion at speed U . The next term

represents the effect of surface tension σ. The last term represents so-called “disjoining pressure”

which contains wettability, or static-contact-angle, information. The function F (x, y) allows for the
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Figure 1 (left): Two disjoining pressure functions as explained in the text. Symbols correspond to

C = 0 in equation (2) while the solid curve is for C = 0.4.

Figure 2 (right): To validate the unsteady time marching solution, we compare the long-time so-

lution, after reaching steady-state, with the solution of Landau-Levich differential equation. The

unsteady problem is solved as a two-point boundary value problem using an implicit time-marching

method. The Landau-Levich equation is solved by a shooting method. The solutions are seen to be

identical.

possibility that the contact angle may vary from place to place on the substrate which is the (x, y)

plane. For a uniform substrate F = 1. Subscripts in equation (1) signify partial differentiation. The

symbol ∇ is the gradient operator with respect to the substrate position coordinates x and y.

The characteristic thickness scale for disjoining pressure Π is h∗ and we use the five-parameter

model

Π(h; h∗) = B1
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where B1 ≥ 0, N > M > 1, h∗ > 0, 0 ≤ C < 1. Mathematically, a repulsive pressure (Π > 0) is

developed for h < h∗. h∗ can be though of as a slip-layer thickness that allows contact line motion

on a solid substrate without violating the no-slip condition. For h > h∗ the disjoining pressure is

attractive (Π < 0). This makes it possible to assign a value to the equilibrium contact angle θe

using energetic considerations. While the disjoining effect becomes negligible for h >> h∗, it can

be preferable to make Π repulsive again in the large h limit. This can be accomplished by using a

positive value of the constant C in Eqn (2). The two cases, C = 0 and C > 0, correspond to the

two basic types of Π functions shown schematically in Teletzke et al (Chem. Eng. Comm. 1987).

Sample disjoining pressure functions are shown in Fig. 1. Setting the parameter B1 equal to zero

will remove the disjoining effect entirely.

The model becomes more transparent if we assume a uniform substrate and take a specific set of



values for the parameters. With F = 1, C = 0 and (N, M) = (4, 3), equation (1) becomes
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The relationship between B1 and the equilibrium or static contact angle θe may be found in Schwartz

(Langmuir, 1998). Some additional insight is gained by writing the equation in dimensionless form.

Let the characteristic substrate length and time units be

L = h0

�
σ

3µU

�1/3

, T ∗ = L/U. (4)

The characteristic coating thickness is h0, the thickness predicted by Landau-Levich theory for a

plate pulled out of a bath at speed U . (See Levich, V., Physiochemical Hydrodynamics, Prentice-

Hall, 1962). Assuming perfect wetting, the result is

h0 = 0.643R0

�
3µU

σ

�2/3

where R0 =

�
σ

2ρg

is the radius of curvature of a static meniscus on a vertical plate. The steady-state solution satisfies

a third-order nonlinear ordinary differential equation. It may be solved by a shooting method, as

described by Tuck & Schwartz (SIAM Review, 1990).

For an assumed two-dimensional flow, ∇ becomes simply ∂/∂x, and the dimensionless form of

equation (3), is then

ht = −hx − (h3hxxx)x −K
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This equation is solved numerically subject to an essentially arbitrary initial condition; there are also

two boundary conditions at each end of the computational domain. The layer thickness and slope

are prescribed at the left or bath side. At the right, or thin film side, the slope and third derivative

hxxx are taken to be zero. The input constant K controls the equilibrium contact angle effect. This

single dimensionless parameter, which is

K =
h2
∗

31/3

�
σ

µU

�4/3

θ2
e , (6)

determines whether the contact angle is small enough, or the plate speed U is great enough, for the



Figure 3(left): Demonstration of critical wetting condition for the pulled plate. The coefficient

K = 1.65x10−3
for the non-wetting case (symbols). Reducing K to 1.6x10−3

allows wetting. For

that value, profiles are shown at t/T ∗
= 70 (large hump) and t/T ∗

= 200 (uniform coating).

Figure 4 (right): A corrugated or roughened plate is pulled from a bath. A frame from the unsteady

solution. The film has broken into a pattern of drops.

moving plate to be successfully coated.

Figure 2 compares the steady shooting method solution with the long-time result of solving

equation (5) with K = 0. They are seen to be identical, thus providing validation for the unsteady

algorithm. The existence of a critical speed for coating is demonstrated in Figure 3. When K is

larger than a critical value, the meniscus is only deformed by the moving plate; the liquid meniscus

will slip along the plate and the withdrawn plate will not be wetted. For a slightly smaller K value,

the liquid first forms a large “hump”; then the coating film is drawn upward until the hump passes

out of the top of the computational window.

Non-planar substrates can also be treated by the model. The quantity h3
is replaced by (h−hss)3

wherever it appears on the right of Equation (5). hss(x) is the input function giving the shape of the

substrate. A frame from a computation of a corrugated plate being drawn from a bath is shown

in Figure 4. Here the contact angle is sufficiently small that the meniscus is pulled up the plate.

However, because the contact angle is large enough, the drawn liquid film breaks up into a pattern

of isolated droplets. A pattern of contamination, rather than roughness, can be modeled in a similar

way. The function F (x, y) in equation (1) can be used to simulate high-contact-angle “greasy”

patches, for example. Generally speaking, contamination acts analogously to roughness.


