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Introduction: High-tech coating applications (plastic electronics and photo-voltaic for example) are 

increasingly using roll to roll production for reasons of operation simplicity and costs.  In these applica-

tions, in order to achieve the required very low film thickness (a few microns), negative gap deformable 

forward roll coating is almost always used. Ribbing instabilities are however inevitable in such a flow 

and this forces the operation to be conducted at very low speed.  The quest for a roll coating method that 

is stable and can be conducted at high speed to produce very thin films leads us in the present work to 

consider negative gap deformable reverse roll coating.  A-priori, this technique may not appear feasible 

because of the potential of shearing the rubber layer and damaging the substrate but subject to careful 

start-up we have shown that it works.  In previous forums and in a PhD thesis [1], we presented data 

from a comprehensive experimental programme to demonstrate that very thin stable films can be 

achieved with this technique making it an inexpensive method to implement in practice (see Figure 1).  

Here we attempt to underpin our data with a theoretical model.   

The Model: The problem at hand is complex as it is an elasto-hydrodynamic flow between two co-

rotating rollers, one covered with a rubber sleeve and one rigid roller, the two pressed against each other 

and forming a negative gap.   Using the lubrication approximation, we can write the flow-pressure equa-

tion in the thin nip flow as: 

𝑑𝑃

𝑑𝑋
= 12 [

0.5(1−𝑆)

𝐻2 −
𝑄

𝐻3]    (1) 

with the gap between the rollers given by the geometry of the system as: 

𝐻 = 𝐻𝑖𝑜 + 𝑋2 + ∆    (2) 

and the deformation of the roller linked linearly with pressure as: 

∆= 𝑁𝑒∗. 𝑃     (3) 

In these equations, all the quantities are dimensionless expressing fluid pressure  𝑃 = 𝑝
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manner as the equivalent radius of the applicator and metering rollers,  ℎ𝐴,∞ is the film thickness 

deposited on the applicator roller, the prime quantity of interest in the problem and 𝑁𝑒∗ = 𝜇𝑣𝐴 (
2𝐸

𝑙
)�̅�2⁄  

is a modified elasticity number which defines the extent of viscous forces in relation to elastic forces 

expressed using the elastic modulus E of the roll cover and its thickness l [2]. 

At first examination, Eqs (1-3) appear simple to solve if one chooses appropriate boundary conditions.  

In fact the solution is difficult because of the non-linearity of Eq. (1). In principle this problem does not 

differ from deformable forward roll coating ( see work by Carvalho and Scriven [2,3])  except for the 

fact that the separation region includes a dynamic wetting line (see figure below) and this complicates 

the flow analysis.  In the presentation, we shall present the model, the predictions derived from it and a 

comparison with the data measured to underpin the role of the various parameters, Hio (initial negative 

gap), S (rollers speeds ratio), Ne* (modified elasticity number) and CaA (applicator roller capillary 

number) in the control of film thickness.  

As just stated, appropriate boundary conditions are required.  Here there are two possible sets of 

conditions. 

Case 1: The Reynolds boundary conditions: These state that the flow terminates (at Xm) when both the 

pressure P(Xm) and pressure drop dP/dX (Xm) are zero. From Eqs.(1)-(3), this infers that: 

∆(𝑋𝑚) = 𝑁𝑒∗. 𝑃(𝑋𝑚) = 0      (4) 

𝐻(≡ 𝐻𝑖𝑜 + 𝑋𝑚
2 + ∆(𝑋𝑚)) =

𝑄

0.5(1−𝑆)
     (5) 

Thus, for a set speed ratio S and gap Hio, the following relationship between Xm and Q (≡HA,∞) holds: 

𝑋𝑚 = (
𝑄

0.5(1−𝑆)
− 𝐻𝑖𝑜)

1/2
      (6) 

A unique Q can then be find by trial and error,  by integrating Eq.(1) from the inlet position assumed far 

upstream or at Xi=-1 with P(-1)=0 up to the separation point where a meniscus form Xm until 

convergence is reached when P(Xm)= dP/dX (Xm) =0.  As Eq. (1) is non-linear, a numerical method of 

solution is required and this was obtained using the Matlab software with appropriate subroutine to solve 

stiff non linear differential equation. The predictions from this model will give the film thickness 

variation with the gap number, Hio, a modified elasticity number Ne*, and the speed ratio S. One 

important observation is that the capillary number plays no part as surface tension effect is not 

considered in the Reynolds boundary conditions.  As a meniscus forms when the flow separates to form 

a film on the applicator roller, there is no guarantee thus that the Xm found here corresponds to the 

physical end point of the flow.  

Case 2:The capillary pressure boundary condition: This condition allows for the presence of a separa-

tion meniscus and balances at the separation meniscus hydrodynamic pressure forces with surface ten-

sion forces giving: 

𝑝(𝑥𝑚) = −
𝜎

𝑟𝑚
       (7a) 

or using Eq. (7), its dimensionless equivalent 

𝑃(𝑋𝑚) = −
𝜎

𝑟𝑚
/𝜇𝑣𝐴/�̅� ≡ −

1

𝑅𝑚𝐶𝑎𝐴
    (7b) 



In this equation, 𝑟𝑚 is the radius of curvature of the separation meniscus and Rm is its dimensionless 

equivalent (𝑟𝑚 �̅�⁄ ). Such condition requires a model of the shape of the meniscus to enable computation 

of rm. We use for this the Landau-Levich (1942) and Derjaguin and Levi (1959) or LLD film formation 

conditions where we liken the profile of the metered film on the applicator roller to that formed in dip 

coating.  In such a situation, the final film thickness, hA,∞ far downstream on the applicator roller and the 

radius of curvature are simply related, for low capillary number (CaA<<1) as: 

ℎ𝐴,∞ = 1.34 𝑟𝑚𝐶𝑎𝐴
2/3

        (8) 

The dimensionless radius of curvature Rm is thus: 

𝑅𝑚 = 𝐻𝐴,∞/1.34𝐶𝑎𝐴
2/3

      (9) 

Substituting this equation into Eq.(7b) enables to define the pressure at the separation meniscus as a 

function of operating variables and final film thickness or flow rate  HA,∞, i.e.: 

𝑃(𝑋𝑚) = −
1.34 (𝐶𝑎𝐴

−1/3)

𝐻𝐴,∞
      (10) 

We now require the location Xm of the separation meniscus.  If we take the similarity with dip 

coating further, we will observe that the meniscus on the applicator roller side is divisible into two 

distinct zones, the dynamic meniscus region and the static meniscus region, the two menisci meeting at 

a stagnation point XS (not to be confused with Xm).  In the static meniscus region, the radius of curvature 

remains constant.  However, in the dynamic meniscus region, from the stagnation point down to the 

final film thickness on the roller, the film profile continuously changes. On the basis of experimental 

and theoretical evidence, the film profile can be described by the following exponential form: 

ℎ𝐴(𝑥) = ℎ𝐴,∞[1 + 𝐶1 exp (−
(3𝐶𝑎𝐴)1/3𝑥

ℎ𝐴,∞
)]     (11) 

or its dimensionless equivalent 

𝐻𝐴(𝑥) = 𝐻𝐴,∞[1 + 𝐶1 exp (−
(3𝐶𝑎𝐴)1/3𝑋

𝐻𝐴,∞
)]   (12) 

C1 in the above equation is a constant found by fitting the equation to the film thickness data.  At the 

stagnation point, this equation enables the calculation of the dimensionless radius of curvature Rm as 

follows: 

1

𝑅𝑚
=

𝑑2𝐻𝐴(𝑋)

𝑑𝑋
|

𝑋𝑆

= (3𝐶𝑎)2/3 (
𝐻𝐴(𝑋𝑠)−𝐻𝐴,∞

𝐻𝐴,∞
2 )   (13) 

Substituting Eq.(13) for Rm into the above equation gives the dimensionless thickness HA(Xs) of the film 

at the separation point as a simple proportion of the dimensionless final film thickness HA,∞: 

𝐻𝐴(𝑋𝑠) = 1.644𝐻𝐴,∞      (14) 

The corresponding angular position θA,m is obtained from the geometry of the system as (see Carvalho 

and Scriven (1997)): 

𝜃𝐴,𝑚 = 𝑎𝑟𝑐𝑡𝑎𝑛{−0.644(3𝐶𝑎𝐴)1/3}      (15) 

Now to complete the location xm of the meniscus, we allow the static meniscus to continue with its 

constant rm (i.e. as a circle) all the way to the incoming dry metering roller with which it intersects and 



forms a contact angle, 𝜃𝑀,𝑐, a-priori unknow but which can be fixed from experimental data.  The coating 

gap at the meniscus point is thus given, in dimensionless form as: 

𝐻(𝑋𝑚) = 1.644𝐻𝐴,∞ + 𝑅𝑚(𝑐𝑜𝑠𝜃𝐴,𝑚 + 𝑐𝑜𝑠𝜃𝑀,𝑐)  (16) 

Substituting Rm from Eq. (9) and θA,m from Eq. (15) into the above equation will define the separation 

gap at the meniscus position uniquely as a function of operating variables, contact angle 𝜃𝑀,𝑐 and final 

film thickness HA,∞ . 

We can now invoke Eq.(2) and apply it at the meniscus position to fix Xm as a unique function 

of HA,∞ and operating variables: 

(𝑋𝑚) = [1.644𝐻𝐴,∞ + (𝐻𝐴,∞ 1.34𝐶𝑎𝐴
2/3⁄ ) (cos (𝑎𝑟𝑐𝑡𝑎𝑛 {−0.644(3𝐶𝑎𝐴)

1

3}) + 𝑐𝑜𝑠𝜃𝑀,𝑐) − 𝐻𝑖𝑜 +

1.34 (𝐶𝑎𝐴
−1/3)

𝐻𝐴,∞
𝑁𝑒∗]

1/2

       (17) 

 

The model is now closed and the solution of these equations can proceed using the following iterative 

procedure:  

(i) Fix operating parameters Ne*, CaA, Hio, S and 𝜃𝑀,𝑐 

(ii) Guess a value of HA,∞ (≡Q), then calculate Rm , P(Xm),  HA(Xs), θA,m , H(Xm) and finally Xm using 

Eqs. (9), (10), (14), (15), (16) and (17) respectively. 

(iii)  Integrate Eq.(1), beginning at Xi=-1 with P (-1)=0 and terminating at Xm with a calculated 

P(Xm). 

(iv) Check for convergence that this calculated P(Xm)= [−
1

𝑅𝑚𝐶𝑎𝐴
] = −1.34𝐶𝑎𝐴

−1/3
/𝐻𝐴,∞ 

(v) Alternatively the integration can be carried out backward starting at Xm with P(Xm)= 

[−
1

𝑅𝑚𝐶𝑎𝐴
] = −1.34𝐶𝑎𝐴

−1/3
/𝐻𝐴,∞ and checking that convergence is reached when P (-1)=0.   

Because of the non-linearity of Eq. (1), a numerical integration is again required.  This was performed 

using Matlab software as with the appropriate integration subroutine. 

Results & Discussion: In the presentation, the predictions from this model will be presented, discussed 

and compared with experimental data (see Figure 3 for typical data) to arrive at a conclusion whether or 

not such simple modelling is able to capture the essential operation of this flow. 
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Figure 1: Negative Gap Reverse Roll Coating 

Figure 2: Reverse Roll Coating showing dynamic wetting line pinning at different positions.  

(Although not shown here the metering roller is its deformed position and the coating gap is negative). 

 

 
Figure 3: Experimental Data.  Here dimensionless thickness is actual thickness divided by – negative 

gap plotted as a function of speed ratio and for a range of Elasticity Number, 𝐸𝑠 = 𝜇𝑣𝐴 (
𝐸

ℎ𝑖𝑜
)⁄ . 
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