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Extended Abstract: 

In last years, the development of novel conductive organic materials together with the need to build 

electronic circuits on flexible substrates has renewed the attention on printing technologies (Willmann et 

al (2014)). The effort has been specially directed to roll-to-roll procedures (R2R), mainly due to its high 

production rates. In addition, roto-gravure techniques can give the solution to reach the compromise 

between production rate and the required printed pattern resolution (Krebs, 2009). In roto-gravure 

printing, the pattern to be printed is engraved on the surface of a rotating roll; then, as depicted in figure 

1-a, the printing is made by pressing the flexible substrate between the engraved and a second soft roll 

(Dodds et al. (2009)).  

 

Figure 1: (a) Sketch of a roto-gravure printing system; (b) simpler model for the liquid transfer between a 
single cavity and substrate, considering a one dimensional surface motion; (c) a more realistic model, 

where the surfaces motion tends to mimic the roll-to-roll kinematics. 

(a) (c)

(b)

mailto:dcampana@santafe-conicet.gov.ar
mailto:msc@puc-rio.br


The understanding of the liquid transfer between cavities and moving substrates has been the focus of 

some recent researches. Dodds (2011) made 2D axisymmetric simulations of the liquid transfer between 

a fixed single trapezoidal cavity and a surface moving away in one direction (see figure 1-b), to calculate 

the pick-out liquid fraction φ, that is defined as the relation between the liquid volume extracted from the 

cavity and the initial liquid volume. Dodds (2011) mainly explored the effect of wettability (contact angles) 

and geometry of the cavity on the fraction φ. He found that the cavity aspect ratio has an important 

influence of the liquid transfer process. Later, Campana and Carvalho (2014)) solved a similar model but 

introducing a more complex kinematic model of the surfaces motion which mimics a R2R configuration, 

as shown in figure 1-c. They found that the relative rotational and shearing velocities between the cavity 

and substrate surfaces improve the emptying and increase the fraction φ, respect to the simpler one 

directional motion. Also, for low capillary numbers, it was observed that liquid squeezes out the cavity into 

the outer plane surface, before capillary forces could break the fluid filament. In those cases, the problem 

changes to a liquid bridge being stretched between two plane surfaces and the fraction φ ~ 0.5. 

Campana and Carvalho (2014)) only solved planar cavities (grooves) using the R2R kinematics. Thereby, 

the azimuthal curvature of the liquid bridge -which dominates the evolution and breakup of the filament at 

later stages of the transfer- was not considered. Since most of the printed patterns are built by using 3D 

trapezoidal cavities (dots), the applicability of those results are limited. Thus, this work is an extension of 

Campana and Carvalho (2014), where the focus is to solve a full 3D problem. The new model does not 

have symmetry restrictions and this makes possible to compute the liquid emptying in situations more 

similar to the real cases. Next we briefly describe its main characteristics. 

 
Figure 2: Sketch of the transversal section (z-x plane) of the flow domain, showing spatial variables, 

dimensions and geometric parameters. The coordinate system (x, y, z) is fixed at the center of the cavity 
surface while (x*, y*, z*) is the frame attached to the moving plate. 

 

Figure 2 represents the cross section (in the z-x plane) of the three-dimensional domain considered to 

model the liquid transfer between a single cavity and a moving plate. The trapezoidal cavity, with depth δ, 
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is perfectly symmetric under a z-axis rotation; however, because the plate has a relative velocity Vw(x, t) 

respect to the fixed (x, y, z) frame with components in z and x directions, the liquid bridge is not 

symmetric. The expression of Vw(x, t) was derived in detail in Campana and Carvalho (2014). At t = 0, the 

plate is located perfectly horizontal over the cavity at z = H0. Also a t=0, the origin of the second frame 

(x*, y*, z*) attached to the moving plate has coordinates x*= 0, y*= 0 and z*= H0. This frame will be used 

later to represent the printed pattern on the substrate. 

We consider the fluid as Newtonian with density ρ, viscosity μ and surface tension σ, all of them being 

constant. At t = 0, the system is in equilibrium and a static meniscus is formed between the cavity and the 

plate with static contact angles θc and θp, respectively, while xp and xc are the curves representing the 

contact lines. The outer gas phase has negligible density and viscosity (relative to the liquid properties) 

and a constant pressure p0 = 0 which it is taken as reference. Thus, by neglecting inertial and gravity 

effects, the flow is modelled with the continuity and Stokes equations. Regarding the boundary conditions, 

on the free surface the capillary forces act only in the normal direction and at contact lines we consider 

constant contact angles which are independent on contact line velocity. Also, we used Navier boundary 

conditions on solid walls to remove the stress singularity close to the contact lines (with slip coefficient β). 

Finally, solid walls are impervious and fluid has the same normal velocity as the solid surface. 

As discussed in Campana and Carvalho (2014), the parameters governing the model are: the capillary 

number Ca = μ VE / σ, where VE = ω R √(10/Rb) is an extensional velocity, R the roll radius and ω its 

angular velocity; Rb = R/ δ is the dimensionless roll radius and ωb = ω δ / VE ~ 1/ Rb
1/2 is a kinematics 

parameter of the model. The contact angles θc and θp must be also specified and finally, the trapezoidal 

cavity shape is approximated by a continuous hyperbolic tangent function, with parameters rc and rs (see 

Campana and Carvalho (2014)). 

The system was discretized with the Galerkin finite elements method (FEM) on a moving mesh which 

follows the domain deformation via an Arbitray Lagrangian-Eulerian formulation. Sprittles and 

Shikmurzaev (2013) present a detailed explanation of the method used to impose the boundary 

conditions and kinematics restrictions via Lagrange multipliers. This method was successfully used by 

Campana and Carvalho (2014) and here it was extended to the 3D case. Details on geometry definitions, 

initialization of the solution and re-meshing stages when the mesh becomes excessively distorted are 

similar to those explained in Campana and Carvalho (2014). To choose and appropriate refinement close 

to the contact lines, we monitor the differences between the imposed and calculated contact angles. With 

the selected element sizes, those differences were always below 10% and usually around 1%. Also, 

mass conservation was checked during all simulation, and was typically achieved with 0.1% of error. 

To check the validity and behavior of the 3D model, we first obtained solutions for the 2D axisymmetric 

models. In this case, we used a one-dimensional simplification of the full kinematic, where Vw has 

component only in z-direction. As in Campana and Carvalho (2014), we selected the following set of 

parameters: R = 0.15 m, δ = 50 μm and ω = 13 /s (Rb = 15240 and ωb = 2.5 x 10-3), θc = θp = 70°, rc = 

0.8 and rs = 0.3. The simulations are stopped when the minimum filament radius reaches an imposed 



limit rl = 0.05; in this work we consider that smaller values of r l lead to the breakup of the filament. Also, 

from the computations we got zl, that is the z-coordinate corresponding to rl, and the liquid volume above 

zl; this quantity, divided by the initial volume, is assumed to be the liquid fraction φ transferred to the 

plate. Figure 3 shows the fraction φ for several values of Ca. It can be observed that for the axisymmetric 

model, φ diminishes monotonically as Ca is decreased. This behavior was explained in detail in Campana 

and Carvalho (2014), by analyzing the mobility of the contact lines (in cavity and plate) as a function of 

the capillary pressure gradient. Interfacial shapes as well as values of φ computed with the 3D model for 

the same simplified kinematic (plate displacing only in z-direction), were in excellent agreement with those 

computed with the axisymmetric model. Thus, the full 3D model was successfully validated. 

 
Figure 3: Transferred liquid fraction φ versus Ca. Open circles + line correspond to 2D axisymmetric 

model and asterisk to results of the full 3D model. 
 

Thereupon, we obtained 3D results for the full R2R kinematics and calculated the corresponding values 

of φ; those results are also included (asterisks) in figure 3 and they show just small differences with the 

2D axisymmetric predictions for Ca > 0.02. However, we observed larger differences for smaller Ca; in 

particular at Ca = 0.01, where the 3D model predicts φ = 0.5. This behavior can be explained with the 

help of figure 4, which shows a sequence of images of the cavity emptying for Ca = 0.01. It can be 

observed how the kinematics promotes a squeezing of the fluid outside the cavity until the exterior plane 

surface (t ≤ 2.8). At this stage, the evolution continues as a liquid bridge being stretched between two 

plane surfaces and the breakup occurs almost symmetrically (at t ~5.0).  

While this result predicts more efficiency in both cavity emptying and liquid transfer at low Ca, it also 

implies a higher slipping of the pattern on the substrate, which could diminish the fidelity of the printing 

pattern. To show this, figure 5 depicts the contact lines on the substrate close to breakup. Note that 

graphs were plotted on (x*, y*) axis, that is, on the frame attached to the moving substrate. In this frame, 



the pattern must be ideally centered on x* = y*=0 (cross mark) for good pattern fidelity. However, a higher 

shift is observed when Ca is decreased. 

 

  

  
 

 
 

Figure 4: Evolution of the liquid transfer for Ca = 0.01. At t = 2.8 the liquid spreads almost completely 
outside of the cavity. Then, the dynamics is very similar as filament stretching between parallel plates and 

the breakup occurs almost symmetrically (φ ~ 0.5) at t ~5.0. 
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In summary, these results predict that liquid transfer would be more efficient at high values of Ca, 

because both higher transfer fraction and pattern fidelity should be attained. While at smaller values of Ca 

the fraction φ could be also high, the strong slipping of contact lines could make the printed pattern 

unacceptable. At present more simulations are being performed to capture the transition of φ versus Ca 

(at low Ca) and an experimental setup is being prepared to corroborate these numerical predictions. 

 

 
Figure 5: Contact line on the moving substrate, plotted versus the moving frame (x*, y*). The curve 

denoted as “Initial” represents the position of the contact line at at t = 0 all simulations, while the others 
correspond to the breakup time for indicated Ca. 
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