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This paper considers the particular case of gravity-driven flow down an inclined plane - as 

illustrated in figure 1 - of an evaporating thin liquid film, thickness H(X,Y,T), composed of a resin 

dissolved in a volatile solvent, as it encounters well-defined topography, S(X,Y). It builds on, 

extends and complements the recent experimental, Decré & Baret (2003), and theoretical 

analysis, Gaskell et al. (2004a), of the flow of thin water films over such subsrates. The key 

difference here, of course, is that evaporation leads to significant increases in viscosity of the 

liquid, leading ultimately to the production of a solid resin film on the substrate. 

 

Figure 1: A sketch of a thin film flow down an inclined plate featuring a topography 

 

The assumptions on which the model is based are: 

• Inertia effects are negligible, and the ratio �  of the asymptotic film thickness, H0, to the 

characteristic in-plane length scale, L0, is small. This means that the flow can be 

analysed using a lubrication approximation resulting form the long-wave expansion of 

the Navier-Stokes and continuity equations in terms of � . 
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• Marangoni effects can be neglected as the flow is convection-dominated. Hence the 

surface tension, � , is taken to be constant and uniform. 

• Diffusion of the solvent is sufficiently rapid to ensure a uniform distribution of solvent 

across the thickness of the film. This is the so-call ‘well-mixed’ assumption, Howison et 

al. (1997) 

• The dynamic viscosity, µ, is assumed to depend exponentially on the solvent 

concentration, cs, via the relationship (Schwartz et al. 2001), 

)](exp[ 00 s
cca != µµ

 

where µ0 is a reference viscosity, c0 is the initial solvent concentration, and a controls the 

sensitivity of the viscosity to variations in the concentration. 

Under these assumptions, the (dimensionless) governing equations are: 

For the film thickness, h: 
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For the pressure, p: 

)(cot2)(6 3/13/42 zshCashp !+++"!= #  

For the solvent concentration: 
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Here t is time, x and y are the in-plane co-ordinates, z is the perpendicular coordinate, 

0
/

~ µµµ = , e is the evaporation rate, and !µ /
00

UCa =  is the capillary number. In generating 

the above equations, the following length, velocity, pressure and time scales have been used:  
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where Q0 is the flow rate, �  the density and g the gravitational acceleration. Using these scales, 

the variables are non-dimensionalized as follows: 
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The boundary conditions are:  
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Initially, the free surface is flat and the solvent concentration is uniform and equal to c0. The 

above equations are discretised via a finite difference framework and solved using the efficient 

and accurate implicit multigrid method of Gaskell et al. (2004b). Accordingly, small time steps 

are avoided when the solution varies only slowly, while the accuracy is controlled throughout the 

solution process. 

 
Figure 2: Analytical predictions of film thickness profile (solid lines) and solvent concentration (dashed 

lines) for a gravity-driven film on a uniform inclined substrate. The asymptotic film thickness was 

100 � m,and the inclination angle was 30º. 

 

Results are first presented for the flow of a resin/solvent film down an inclined plane with no 

topographical features. This is a variation on the problem studied by Huppert (1982), and a 

simple analytical solution for the film thickness and solvent concentration can be found. This is 
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useful for testing the numerical formulation of the problem. It is found that three different 

behaviours are possible, as illustrated in figure 2. For large values of a (the sensitivity 

parameter), the surface rises due to the increase in viscosity as the solvent evaporates. On the 

other hand, for small a, the film thins due to solvent loss by evaporation. In intermediate cases, 

both effects are seen: the film first thins due to solvent loss, but then thickens due to viscosity 

increases. Time-dependent numerical calculations of the same problem showed excellent 

agreement with the above results as the simulations approached the steady state. 

Adding now a full-width spanwise trench (depth 0.7H0 and streamwise width 4L0) to the 

substrate, figure 3 shows the effect of this topography on the film thickness and solvent 

concentration.  Note that the conditions for this simulation are the same as in the uppermost 

graph  in figure 2. Hence one can see that the trench has a marked effect on the film thickness, 

but does not affect the composition of the resin/solvent mixture or, therefore, the viscosity. 

Figure 3: Comparison of steady-state streamwise profiles of film thickness, solvent concentration and 

viscosity obtained numerically and analytically for flow over a full-width spanwise trench of depth 0.7H0 
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and streamwise width 4L0. The solid line is the numerical solution, while the dots are the analytical 

solution, which neglects the topography. 

A very different picture is seen when flow over localized topography is considered. Figure 4 

shows 3D views of the free surface and the a surface plot of viscosity which result from flow 

over a square trench of width 5 capillary lengths and depth H0. The free surface view looks 

similar to that observed by Gaskell et al. (2004a) and Decré & Baret (2003) for pure liquids: a 

curved upstream ridge develops, along with a downstream ‘surge’ in thickness. However, this 

surface does steadily increase in height downstream, in keeping with the results of figure 3 for 

the full-width trench.  It is in the form of the viscosity (and hence the solvent concentration) that 

the biggest difference is seen. Figure 4 shows that unlike the full-width trench, the localized 

trench has a marked and lasting effect on the composition of the resin solution downstream of 

the topography. 

 

Figure 4: Left: a view of the free surface produced in flow over a square trench. Right: a corresponding 

surface plot of viscosity, illustrating the lasting effect of the localized topography. The arrows indicate the 

direction of flow. 

 

A means of visualizing how a dried film might look is provided by the fictitious ‘resin/solvent 

interface’, which is defined as hcs
s
)1( !+ . This ‘interface’, which clearly does not really exist 

since the resin and solvent are mixed, represents the dried film profile that would be obtained if 

all the solvent spontaneously evaporated. Figure 5 gives a 3D view of this ‘interface’ for the 
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same flow as depicted in figure 4, and demonstrates the effect of the localized topography on 

the resulting coated film. 

 

Figure 5: A 3D view of the artificial ‘resin/solvent interface’, which gives an idea of how the dried film 

would look if all the solvent spontaneously evaporated. The flow is the same as in figure 4, i.e. that  

over a square trench. The arrow indicates the direction of flow. 
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