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Introduction 
 
In this paper, direct numerical simulation (DNS) results for drops striking solid substrates will be 
presented. Results will be presented for drops striking both flat surfaces and rods. Both the 
impact of the drop and the subsequent spreading of the drop will be discussed. Results will also 
be shown for pairs of drops with and without evaporation of the liquid phase. The results were 
obtained using a formulation of the lattice Boltzmann method (LBM).  
 
Until recently, LBM simulations of two phase flow have been limited to density ratios of order 
10 or less. Inamuro et al. (2004) developed a thermodynamically based LBM that permits 
simulations at density ratios up to 1000 and used it to investigate binary drop collisions in a 
stationary gas. Their method is a heuristic modification of the “Oxford” formulation of the LBM 
developed by Swift et al. (1996). The principal modification involves the computation of the 
pressure from a Poisson equation.  
 
We have used an extension of Inamuro et al.’s LBM that incorporates the physics associated with 
wetting of a solid substrate to simulate the formation and detachment of drops, their subsequent 
propagation through the gas phase, and their eventual fate after impacting a solid substrate. The 
impact may result in splashing or complete deposition on the substrate, followed by wetting of 
the substrate. By adjusting the humidity of the liquid phase in the gas, the effects of evaporation 
can be studied. 
 
In what follows, we will first describe the problem formulation. After a brief description of the 
numerical methods, we will present representative results to illustrate the ability of the method to 
correctly describe the physical processes.   
 
Formulation 
 
The simulations to be discussed were performed for in a channel formed by two, infinite parallel, 
smooth walls. Periodic boundary conditions were imposed in two orthogonal directions parallel 



to the walls. In describing the system, a Cartesian coordinate system in which the x-coordinate is 
perpendicular to the walls will be employed, and periodic boundary conditions were imposed in 
the y and z-directions. In the simulations to be discussed, gravity was neglected. Lattice units 
will be used in quantifying the problem. The unit of length is the grid spacing, which was 
uniform.  
 
In one set of simulations, one or two drops were projected toward one of the two bounding walls. 
The initial velocity of a drop was sufficiently large to enable the drop to reach the wall. In the 
case in which two drops were projected toward the same wall, the drops had identical initial 
velocities pointing in the x-direction. In a second set of simulations, drops were projected toward 
one or more rectangular rods. 
 
Numerical Methods 
 
A formulation of the lattice Boltzmann (LBM) method developed by Inamuro et al. (2004) was 
used to perform the simulations. This formulation has the advantage that it can be used for 
density ratios as large as 1000. In the simulations to be discussed, the density ratio was 50; larger 
density ratios can be used, but more computer time is required for the simulations. The 
formulation of Inamuro et al. was developed for periodic, unbounded fluids. To impose rigid 
boundary conditions and the desired wettability, the method described by Briant et al. (2004) was 
used. Briant et al. used Cahn’s (1977) surface free energy formulation to impose the wettability 
conditions.  
 
A key quantity in the Inamuro et al. formulation is the order parameter, φ . The order parameter 
satisfies a transport equation involving convection and diffusion. The values of the order 
parameter fall between two limiting values, minφ and maxφ , for which two-phase equilibrium with 
a flat interface is possible. The fluid density is determined as follows: 
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where GL ρρρ −=∆ , Lρ  is the bulk density of the liquid phase, Gρ is the bulk density of the gas 

phase, ∗∗∗ −=∆ GL φφφ , and 2/)(
___

∗∗∗ += LG φφφ . The quantities *
Gφ  and *

Lφ  are chosen to be 
somewhat different than minφ and maxφ ..  
 
In lattice units, the densities of the gas and liquid were 1 and 50, respectively. The kinematic 
viscsosities of the gas and liquid were 0.0016, and the surface tension was 0.201. The thickness 
of the gas-liquid interface was approximately 3.  
 
Results 



 
Let us consider typical results for drops striking a flat wall. In one simulation two identical drops 
were projected toward a flat, solid wall. The drops struck the wall, spread out and merged into a 
single drop. The equilibrium contact angle was 90o. After 41,000 time steps, the dynamic contact 
angle was 88.6o , and the footprint of the product drop on the wall was nearly circular. The 
simulation was done for the following parameter values (in lattice units): initial drop radius = 10; 
initial drop velocity = 0.05; equilibrium contact angle =90o. The drops were placed in a 
60× 60× 60 computational domain. The domain was bounded by two flat, rigid walls at 0x = and 

60x = . At 0t = , one drop was centered at 30z,42y,40x ===  and the other drop was centered at 
30z,18y,40x === . The initial x-component of velocity of each drop was 0.05, and the other two 

components were zero. Thus, the initial Reynolds number of each drop was 625, and the initial 
Weber number of each drop was 12.4. Figure 1 shows a cross-sectional view at 30z = . It may be 
seen from the sequence of images that the drops move gradually apart before striking the wall; 
this suggests that they exert a repulsive lift force on each other. After striking the wall, the drops 
spread out, contact each other, and merge. The footprints of the same two drops on the wall are 
shown in Figure 2 for approximately the same times as the images in Figure 1. 
 
 
 
 
 
 
 
Fig. 1. A sequence of images showing a cross-sectional view of two identical drops having 
identical initial velocities that strike a wall and merge. 
 
 
 
 
 
 
 
 
Figure 2. Footprints of the two evaporating drops shown in Fig. 2. 
 
To relate the above results to real physical systems, let us assume that the dynamic viscosity of 
the drops is 30cP, the drop density is 1 g/cm3 , and the surface tension is 40 g/s2 , and determine 
the velocity and size of the drops from the Reynolds number and Weber number. The drop 
velocity is Re)/We)(/(v Lµσ= where σ  is the surface tension and Lµ is the dynamic viscosity of 
the liquid. For the assumed values of  σ  and Lµ , the velocity is 6.7 m/s. The corresponding drop 
diameter is 2.8 mm. For an inkjet, Re=20, We=0.5 might be appropriate. We can achieve these 
values by using an initial drop velocity roughly equal to 0.0125 and a kinematic viscosity equal 
to 0.0125. 
 
Evaporating Drops. To cause evaporation, the initial value of the order parameter was set to 
values lower than minφ  (the minimum value of the order parameter that is determined from the 



conditions that the chemical potential and the thermodynamic pressure should be the same in the 
liquid and gas phases.) In one run, the initial value of φ  was min5.0 φ . At the completion of the run 
(4000 time steps), 47% of the liquid had evaporated. There was no qualitative difference between 
this run and the non-evaporating drops run; the drops struck the surface and merged. In the 
second run, the order parameter vanished outside the drops in the initial condition. In this run, 
72% of the liquid evaporated in 4000 time steps. The sequence of events was qualitatively 
different; the drops struck the surface and spread out, but they did not merge. The shrinkage of 
the drops with time can be clearly seen in Figure 3. The dynamic contact angle at the end of the 
simulation was 96.2o. The fact that the contact angle was farther from the equilibrium angle than 
for the non-evaporating drops is attributable to contact line motion caused by evaporation. 
Although we set the order parameter to zero in the second run, this does not mean that the drops 
were initially moving through a vacuum. The density and viscosity of the gas phase are fixed in 
the Kyoto formulation. Setting the order parameter to zero corresponds to setting the humidity to 
zero. 
 
 
 
 
 
 
 
Figure 3. Cross-sectional view of two evaporating drops striking a wall. 
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