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Introduction: This paper sheds new light on the static contact angle arising from molecular interactions 
close to a three-phase contact line. A ‘fluid slice’, representing a two-dimensional analogue of a sessile 
droplet standing on a flat and horizontal surface, is considered. A model is proposed for the vapour-liquid 
interface that involves a transition from an outer capillary region to an inner molecular region where
curvature is dominated by a capillary meniscus and disjoining pressure respectively. Characteristic lengths in
the capillary, transition and molecular regions are (maximum film thickness); ht (film thickness at th

Ch e 

point of null curvature) and hm ( [ ] [ ]( )6 6 6π σ= −m LL SLh A A ); that are typically of the order of 10-3m, 10-7m 

and 10-10m respectively and  is a small, system parameter.  ( /m th hε = )
As a macroscopic concept, the static contact angle is located outside the molecular region where the specific 
interfacial free energy is equal to the bulk interfacial tension. Integration of the augmented Young-Laplace 
equation reveals that, although there is no point on the vapour-liquid interface where the angle of inclination 
is identically equal to the macroscopic static contact angle, θo , the angle at the point of null curvature is the 
closest with the difference of O(ε2). It is also shown that the transition region is essentially a wedge,
extending from a few nanometers to a few micrometres, where curvature effects are negligibly small and to 
O(ε), the angle of inclination is equal to θo. Hence the transition region can be regarded as the  natural
’location’ for the macroscopic static contact angle and this, in turn, validates an experimental procedure for
an accurate and unambiguous measurement of static contact angles. This model of a transition region with
slope angle θo  and constant surface tension is entirely compatible with the current interpretation of Young’s
equation as a macroscopic relationship between macroscopic, experimentally observable, thermodynamic 
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variables and the angle θo. that is also a boundary condition, at the solid surface, for solutions of the Young-
Laplace equation. 
 
 
Governing Equations: In his original publication on the cohesion of fluids, Young (1805) described static 
contact angle equilibrium as a balance of forces at the three-phase contact line due to interfacial tensions 

,  ,  σ σ σSV SL
 at the vapour-liquid, solid-vapour and solid-liquid interfaces respectively 

  
 cosσ θ σ σ= −o SV SL  (1) 
 
Using an intermolecular force model, Rayleigh (1890), confirmed Young’s equation as a macroscopic 
relationship that holds away from the contact line and the influence of molecular forces. Benner et al. (1982) 
referred to Young’s equation not being valid in a contact region near the solid where the fluid-fluid meniscus 
cannot be precisely defined. 
 
Doubts about the validity of Young’s equation arose with the derivation of alternative equations for θo based 
on various intermolecular force models (Jameson et al. 1976). The issue was subsequently resolved by 
Merchant and Keller (1991) who used the method of matched asymptotic expansions to validate Young’s
equation and deal with the alternative equations. They showed that the leading term in the outer expansion
for the interface satisfies the YL equation whilst that in the inner (boundary layer) expansion satisfies an
integral equation. Matching the solutions of these two equations confirmed that the slope angle, at the solid 
boundary of the leading term in the outer expansion, is that given by Young’s equation. Two further
conclusions follow from this key result. It leads to a precise mathematical definition for θo  - as  the slope 
angle of the interface at the point of intersection of a solution of the YL equation with the solid surface, and
the model, proposed in this paper, of a transition region with slope angle θo and constant surface tension is 
compatible with the current interpretation of Young’s equation as a macroscopic relationship  between
macroscopic, experimentally observable, thermodynamic variables and the angle θo.  The interfacial 
tensions , ,SV SLσ σ σ  refer to the constant values taken by the specific, interfacial, Gibbs free energies gVL, 

gSV, and gSL away from the contact line and the effects of molecular interactions. 
 
The equation for the shape of the vapour-liquid interface, taking full account of disjoining pressure and
interfacial free energy is the fully augmented Young-Laplace equation (FAYL); 
 
 ( ) ( ) ( ), 2 ,θ θ= −Π − −L V

VLg h H h p p  (2) 
 
where are pressures in the liquid and vapor phases respectively and, ,Lp pV )( ,VLg h θ , is related to 

disjoining pressure, ( , )θΠ h as proposed by Derjaguin et al. (1987). Disjoining pressure, ( ),θΠ h and 

specific interfacial free energy, , can be expressed in terms of Hamaker constants when only London-

van der Waals forces are taken into account 
VLg
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Sufficiently far from the contact line, the integral term in (3) vanishes,  attains a constant value, 

VLg σ , and 

equation (2) reduces to the AYL equation. Hamaker constants are shown as [ ]6
ijA indicating that they are used 

in a Lennard-Jones potential and the exponent of the binary interaction distance is -6. The sub-index ij
corresponds to interaction between phases i and j. The function [ ]6G depends on the angle of inclination of 
the interface and results from the integration of a truncated Lennard-Jones potential over the volume of the 
adjacent phases. Integration of molecular forces was first done by Miller and Ruckenstein (1974)  and later 
by Jameson and del Cerro (1976) , but details of this integration for a range of exponents are given by 
Fuentes (2003). Here, only London-van der Waals forces are taken into account and the angular function is
assumed to be approximately constant, [ ] ( )6 1G θ ≈ . As a consequence both disjoining pressure and 

interfacial free energy are functions of film thickness only. For the fluid slice, the hydrostatic pressure term is 
given by 
  
 ( )ρ− = −L V

Cp p g h h  (4) 
 
where , the thickness of the liquid film becomes a constant, , for large values of z. With an (r, φ)

coordinate system centered at the contact line, Cartesian variables z and , as well as the curvature of th
( )h z Ch

( )h z e 

curve  are given by (Scriven, 1982): ( )h z
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Four Region Model: A four region model is proposed for a liquid film on a solid surface with a static,
three-phase contact line. Based on film thickness, the liquid domain is divided into four distinct regions (see 

Figure 1) from the vicinity of the contact line to the bulk film 
thickness; these are the molecular, transition, capillary and distal
regions. The molecular region, 

LD h h< ≤ , is the inner region 

where molecular interactions due to the presence of a solid phase
give rise to disjoining pressure and interfacial free energies that
determine the shape of the interface. The transition region takes 
the shape of a wedge in which variations, in the angle of
inclination of the interface, can be made as small as one wishes
by a judicious choice of its limits, hL and hU . Within this region, 



disjoining pressure competes with capillary and hydrostatic pressures whilst interfacial free energies have
attained constant values. The capillary region23, 

Uh Ch h≤ ≤ , is where capillary and gravity forces dominate 

over all other external forces and the characteristic length is the capillary length,  / ( )CL gσ ρ= . Finally, 

ion, for 
Ch h> , where the characteristi th may be a macroscopic length such as ththere is a distal reg ngc le e

size of the container. All four regions are defined outside a molecular cutoff distance, h D> , where D ~ 10-

10 m  since there can be no liquid film for h < D. For a full Leonard-Jones potential between two molecules7, 
the molecular cutoff distance D is the minimum approach between two molecules before repulsion forces
pulls them apart.  
 
Identifying and Measuring the Macroscopic Contact Angle. The four region model allows the definition 
of θo as the limit of analytical or numerical solutions of the YL equation. Although it does not identify where
the macroscopic contact angle is located, it is, nevertheless, particularly helpful for anyone wishing to 
measure contact angles directly from an image of the interface. The procedure involves matching a digitized
image of the vapour-liquid interface to a solution of the YL equation13 and extending this solution until it
intersects the tangent to the solid surface. Clearly this method removes the uncertainty of how much we
should amplify a digitized image and how close to the solid surface we should measure the contact angle. 
The question now arises as to where, on the vapor-liquid interface, the angle  is to be found?  In fact, our 
analysis produces three key results (i) θo is greater than all angles of inclination on the  interface and  there is, 
therefore, no location on the interface where the slope angle is identical to θo . (ii) the angle of inclination at 
the position of null curvature is the closest to θo  with the difference of O(ε2),  (iii) in the transition region 
where curvature effects are negligibly small, then to O(ε),  the slope angle is equal to  θo.. Hence, to this order 
of approximation, the macroscopic static contact angle θo can be identified as the slope of the transition 
region or ’ wedge angle’.  
 
And so to conclude; the definition of the static contact angle as a boundary condition at the solid-liquid 
surface for solutions of the YL equation enables us to identify θo, to O(ε), as the angle of inclination of the 
wedge-shaped transition region and, to O(ε2), as the inclination angle at the position of null curvature. 
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