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An economically important class of materials called nonwovens finds application inpersonal care and
medical products, filters and related devices. Liquids are applied either directly to the porous nonwoven
material or are deposited on a perforated, but otherwise impermeable, top sheet. We have developed a math-
ematical and numerical model to predict the subsequent flow history. The mathematical model uses either
two-or-three dimensional lubrication theory for the unsteady coating flow on the outer surface, infiltration
into the porous pad uses the Washburn equation and spreading within the pad uses Darcy’s Law. The model
can be used to optimize the design of these products and the effects of changes in surface tension, wettability
and permeability can be assessed. Results are particularly relevant to the design of diapers, adult incontinent
products, feminine hygiene products, bandages and similar articles.

This work is oriented towards development of a complete process model for pad products. As

in other industries that involve the movement of fluids, often practical flow problems involve many

different control parameers and it can be very difficult to understand how a final desirable, or unde-

sirable, aspect of product performance is related to its root causes. If a sufficiently accurate com-

puter model can be constructed, process and product optimization can be done first on the computer.

Moreover, parameter values can be varied at will, often to values that are difficult or impossible

to obtain in products that are currently available. By running the model using various parameter

choices, it should be possible to better understand causes and effects, and thus to identify perfor-

mance improvements.

Pad products typically consist of a porous top sheet, a non-woven absorbing pad, and an imper-

meable bottom or backing sheet. The so-called “insult” liquid is deposited on the top sheet. The

fluid region can be assumed to be long and thin and thus can be treated as a coating flow. The

problem may be simplified considerably by invoking thelubrication approximation.

Some results of lubrication flow analysis are given first, foran assumed two-dimensional geom-

etry, for flow on the upper or inner surface of the top-sheet. The flux, or total flow within a liquid
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layer of thicknessh, is given by
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whereu is the flow speed,p is pressure,s is arc length measured along the upper side of the sheet or

substrate andθ is the downward inclination angle of a particular substrateelement from the horizon-

tal. To a first approximation, flow over a curved substrate maybe treated simply by “unwrapping”

the substrate onto an equivalent straight surface. The magnitude of each of the gravitational force

components varies from one element to another. The pressurecomponents remain unaffected by the

unwrapping, provided that the fluid layer thickness is much less than the radius of curvature of the

substrate.

The pressure includes various contributions,i. e.

p = −σhss − Π + ρgh cos θ . (2)

These terms on the right are (i) the contribution from surface tension wherehss approximates the

liquid free-surface curvature, (ii) the so-called “disjoining pressure” and (iii) the gravity component

perpendicular to the substrate. Subscripts signify differentiation. The disjoining pressure is
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whereθe is the local equilibrium contact angle for the liquid on the top-sheet material andh∗ is a

small constant reference height that represents a fictitious “slip” thickness on “dry” regions of the

substrate. It is known to be necessary to include a provisionfor slip in any dynamic simulation that

involves moving contact lines [1].n andm are positive integers withn > m. The results given here

usen = 3 andm = 2. TheΠ term allows incorporation of substrate energetics information.

Overall mass conservation is

ht = −qs − E (4)

whereE, having the dimensions of velocity, incorporates liquid removal. The major liquid removal

mechanism is absorption to the pad interior butE may also contain evaporation. IfE is locally

negative, it can include a deposition function representing insult additions as a function of location

and time.



Using such dimensionless variables, the single evolution equation to be solved is
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In the dimensionless equationh, s andh∗ are measured in units of the so-called capillary lengthLc

and time is given in units ofT ∗ where
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√
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σ
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Flow within the pad may be modeled usingDarcy’s law, the standard formalism for flow in

porous media. For simplicity the medium can be assumed to be homogeneous and isotropic with

constant permeabilityk. According to Darcy’s law, the flow speed is proportional to the pressure

gradient; specifically

u = −
k

µ
∇p (7)

while mass conservation is

∇ · u = 0 . (8)

Note that the mass conservation equation would be modified ifthe model were to allow the pad to

swell when liquid is absorbed. Combining these equations, wesee that the pressure field within the

pad satisfies

∇
2p = 0 . (9)

The boundary conditions are that the pressure is essentially atmospheric under the wetted portion

of the top-sheet and is less than atmospheric by an amount equal to the capillary pressure at the

moving interface within the pad. The capillary pressure depends on the geometry of the closely-

spaced fibers and the wetting angle that the invading liquid makes with these fibers. Thusp acts

as a velocity potential, allowing the interface to be advanced using (7). As liquid is absorbed, the

remaining depth on the top sheet is reduced. No further flow progression is allowed where the

interface reaches the backing sheet.

Some results of two-dimensional simulation are shown in Figs (1)-(4). The first three figures

are snapshots from shortly after an insult is deposited until it has been absorbed completely in the

pad. Perfect wetting and the gravitationally-driven flow allows the insult to spread laterally, both



features are seen to promote good absorption. When the same simulation is repeated with less good

wetting (θe = 60o), the liquid has contacted the backing sheet and is not absorbed completely after

a relatively long time.

Figure 1: Early-time picture of a flowing insult. Perfect wettingθe = 0. Note the residual tail that is left
behind. This increase of the size of the “footprint,” due to the flow, aids in absorption.

Figure 2:The same insult 5 sec after deposition. It has flowed to the low point and about half of it has been
absorbed.

Figure 3:The top sheet is dry at 11 sec after deposition. Notice that the insult has been completely absorbed
without ever reaching the impermeable back sheet(the green line).

The two-dimensional analysis given above has been extendedso as to model three-dimensional

effects. Thus actual deposited volumes can be specified and additional flow effects, such as sideways

spreading, can be modeled.

The equations given above remain valid with certain modifications. The mass conservation



Figure 4: After 59 sec the insult has not been completely absorbed forθe = 60
o. The large contact angle

causes the insult to have a small footprint. Although the volume is the same as forthe perfect wetting case,
here the absorbed insult reaches the back sheet. Further absorption can now occur only very slowly since the
liquid must spread sideways at the distant boundaries.

equation (4) generalizes to

ht = −∇ · Q − E (10)

where the∇ operator is(∂/∂x, ∂/∂y) in the curvilinear top-sheet coordinates(x, y) and Q is a

flux vector. The top sheet is assumed to be a ruled surface with curvatureonly in the(x, z) plane.

The direction of gravity is parallel to the(x, z) plane. Thusy is a Cartesian coordinate “out of the

paper”whilex is arc-length along the bent top sheet.x is essentially similar to the arc lengths

used above.z is distance measured perpendicular to the top-sheet. Thus,for example, the liquid

free surface is given byz = h(x, y, t). There is a pad of specified thickness below the topsheet

whose thickness equationz = Tpad(x, y). Only a pad of constant thickness is considered in the 3D

simulation shown here. The saturation interface within thepad, which gives the shape of the soaked

pad region, is denoted by the functionz = −Z(x, y, t).

The evolution equation for the free liquid surface above thepad becomes
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whereθ = θ(x) is the local topsheet inclination relative to the directionof gravity. The topsheet is

currently assumed to be bent into a circular arc. The disjoining functionΠ and the specification of

equilibrium contact angleθe are as given in equation (3).

A relatively simple pad flow model has been used here. It consists of two parts. There is normal

infiltration; specifically equation (7) is replaced by the simpler Washburn-type relation

dZ

dt
∝

1

h∗ + Z
. (12)



Then sideways spreading within the pad is modeled using a diffusion equation forZ(x, y, t),

Zt = κ ∇
2Z (13)

where the constantκ can be best-fitted using experimental measurements.

Simulation results for a time at which about half the original insult has been absorbed are given

in Figs (5) - (7). A wire-cage picture of the remaining insultsurface is shown in Fig (5); alternatively

a contour plot can be constructed as in Fig. (6). The absorption profile within the pad is shown in

Fig. (7).

Figure 5:A frame from a 3-dimensional simulation showing a flowing mound of liquid on the top sheet.

Figure 6:A contour plot of the top sheet liquid distribution using the same data as the previous picture. The
rectangular pad is of dimensions 9 cm by 3 cm.

Figure 7:The adsorption distribution in the pad. A small amount of dispersive spreading within the pad is
incorporated in the simulation. For ease of display, the pad is “unwrapped.” The space scales are in cm while
the vertical scaleZ is dimensionless. The top sheet corresponds toZ = 0 and the impermeable backing is
Z = −1.



A number of other features have been incorporated into the model. The actual speed of liquid

flow into the pad, at each point, is controlled by the size, shape, and spacing of the holes in the

top sheet. The computer model allows these inputs to be specified. The flow of the insult along

the top sheet is strongly influenced by the local equilibriumcontact angle. Typically the top sheet

is impregnated with a surfactant or wetting agent. It is known that this wetting agent loses some

effectiveness as a function of contact time with liquid. Themodel can accept variation of contact

angle with position and time. The top-sheet holes typicallyare truncated elliptical cones (as seen in

Fig. 8) and an approximate treatment of this feature is also included.

Figure 8:Micrograph of topsheet showing some pad fibers through the cones. The length of the bar in the
figure is 750µm.
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