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Dynamic wetting or dewetting is important in many industrial coating processes. The wetting of 
a solid with a liquid has great relevance e.g. in the production of photographical films, or in the
production of LCD screens. In these manufacturing processes a high production rate and a good 
quality of the coating layers are demanded. The most common limitation in all coating processes
is the wetting velocity. In 1959 Deryagin and Levi found experimentally that, given a 
sufficiently-high film velocity, coating failures crop up. In the case of coating failures, the 
dynamic contact line, where the three phases solid, liquid and gas merge, becomes unstable and
transforms from a straight line into a saw-tooth shape. Additionally, air entrainment appears at 
the peaks of the saw-tooth triangles. As a consequence of such coating failures, the integrity of 
the coating layer is lost and the final product may be useless. Around an unstable dynamic 
contact line, the liquid and gas flows transform (from two-dimensional base flows) into three-
dimensional flows. Various more recent experiments (Deryagin 1964, Perry 1967, Burley and 
Kennedy 1976, Blake and Ruschak 1979, Burley 1992) confirm that for coating velocities below 
the critical velocity the dynamic contact line remains straight, whereas at sufficiently-large 
velocities (above the critical velocity) the contact line develops a saw-tooth shape. The instability 
of the dynamic contact line is certainly linked to the stability of the flows on both sites of the
wetting (dewetting) interface. Hence, it may be caused by the wetting liquid flow or by the 
dewetting gas flow, in which the dynamic contact angle approaches 180 degrees. For an accurate 
prediction of the critical coating velocity, therefore, it appears highly desirable to investigate the 
stability of the flows on either side of the free interface for this coating situation. 

Currently, we focus within our stability analysis onto a wetting process, where a tape is 
(vertically) plunging into a large pool of liquid (cf. figure 1). In the convergent gap between the 
moving solid strip and the free interface a gas flow is present, which essentially removes the gas
from the solid to allow for the liquid coating. The gas flow in this convergent gap is studied in 
the following stability analysis. In principle, there are two different types of gas flow possible; in 
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figure 1 these are sketched and termed type 1 and type 2.  

                               
Fig. 1. Principle sketch of possible flows in the convergent gas gap. 

                          
Fig. 2. FEM simulations for Reg=150 and Reg=0.1. 

In both figures the tape moves with the wall velocity uw into the pool of liquid. For type 1 the gas 
flow is directed out of the convergent gap along the free gas/liquid interface. For type 2 the flow
is directed out of the convergent gap along a dividing stream line, while at the free gas/liquid 
interface the flow is directed into the gap (contrary to type 1). Experimental and numerical 
studies of the flows near the dynamic contact line (cf. Royon & Ehrhard 2001) show that,
depending on the gas Reynolds number  
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and on the viscosity ratio µg/µl, one obtains the flow structures of type 1 or type 2 for a given 
contact angle ΦD. r0 denotes the (constant) radius of curvature, approximated for the free
interface. Figure 2 illustrates the different flow patterns of type 1 and type 2 for liquid Reynolds 
numbers of Reg=150 and Reg=0.1, and for a constant viscosity ratio µg/µl =0.017, obtained from 
numerical (FEM) simulations. The parameters are taken from the system water/air, whereas the 
variation of the tape velocity allows to vary the Reynolds number. Figure 2 gives streamlines at a



(constant) dynamic contact angle of ФD=150° for both cases. 

For the stability analysis, we treat the gas as incompressible Newtonian fluid. The base flow in 
the wedge appears to be two-dimensional (plane) and steady, featuring the two basic patterns as 
discussed above. In a first step, the free interface is idealized as geometrically fixed and plane, 
featuring an opening angle of Φ0=30°. The kinematic boundary conditions are taken accurately 
at the moving tape and approximated at the free interface: for small µg/µl we can expect Ul → -
Uw (type 2), for large µg/µl we can expect Ul → +Uw (type 1). The governing equations and 
boundary conditions are non-dimensionalized and formulated in cylindrical coordinates. This 
enables us to map e.g. the radial coordinate from the (infinite) interval 0 ≤ r ≤ ∞ onto the finite 
interval 0 ≤ R ≤ R∞.  A principle sketch of both investigated wedge flows is given in figure 3. 

                                 
Fig. 3. Two basic patterns of wedge flows under investigation. 

The base flows V0 (two-dimensional, steady) are subjected to small disturbances V´ of amplitude 
ε, which are three-dimensional and time-dependent, i.e. we use 
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For the perturbation analysis, the disturbance terms are modelled by Fourier series in Φ and by 
complex exponential functions in time τ and Z. Hence, we use 
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The above ansatz for the disturbances allows for periodic behaviour in Z and for periodic and 
damped/amplified behaviour in time. From the Fourier series in Φ we consider solely terms, 
which satisfy the kinematic boundary conditions for the disturbances, namely 
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The perturbation ansatz is implemented into the time-dependent and three-dimensional Navier-
Stokes equations, and a Galerkin method is applied to integrate along Φ within the range 0 ≤ Φ ≤ 
Φ0. Hence, we arrive at a system of linear, homogenous ordinary differential equations for the 
Fourier coefficients Bk(R), governing the radial behaviour of the perturbations. The two-point 
boundary value problem for the coefficients Bk(R) can be solved numerically, and for each eigen 
value ωim,k both the differential equations and the boundary conditions at R = 0 and R =  R∞ can 
be fulfilled.  

For both types of flows figure 4 shows at a dynamic contact angle of 150 degrees (opening angle 
30 degrees) the stability results. The first few eigen values ωim,k are plotted against wave number 
a for different modes k and (modified) Reynolds numbers Re = uwr∞Φ0/νg. For the wave number 



a → 0, two-dimensional and time-dependent disturbances are present, while for a ≥ 0 spatially-
periodic (in Z) and time-dependent disturbances are considered. As conclusion from the two-
dimensional case (a = 0) we find only eigen values ωim,k > 0, ωre,k = 0, ensuring all disturbances 
to be damped in time in an exponential fashion. Moreover, with increasing Reynolds numbers the 
eigen values approach zero, clarifying that increasing Reynolds numbers tend to destabilize the
system, i.e. larger Re lead to weaker damping of the disturbances. For the three-dimensional 
time-dependent case, we find with increasing wave numbers a increasing eigen values ωim,k. This
means that (at constant Reynolds number) shorter wave lengths (in Z) are in general more stable 
than infinite wave lengths (a → 0). Finally, all higher modes (cf. second mode, etc.) give larger 
eigen values ωim,k compared to the first mode. In conclusion, the first mode appears to be the 
most critical mode. The base flow in the convergent gap with straight (approximated) 
boundaries, in summary, appears to be stable against small disturbances of all kinds.  

Further, we have conducted purely-numerical (three-dimensional, time-dependent, FEM) 
disturbance investigations, which recover the analytical eigen values for both types of flow,
provided that small perturbations are introduced. Larger perturbations, which can be likewise
introduced in such numerical studies, in all cases have been found to be damped in time,
however, at slightly different exponential behaviour. These simulations ensure that (i) the
analytical stability analysis has captured the dominant modes and that (ii) qualitatively-similar 
behaviour is present if finite-amplitude disturbances are introduced. In our present studies, we 
extend the idealized base flows towards a more realistic geometry and towards more realistic 
(stress) boundary conditions of/at the free interface. In particular, the free interface has a defined 
(and constant) radius of curvature, introducing a secondary length scale. 

                     
Fig. 4. Leading eigen values for wedge flows of type 1 and type 2. 
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