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1. INTRODUCTION

The flow of a thin film of viscous fluid over a smooth rotating disk has attracted the attention
of several investigators in science and engineering due to its enormous applications in many indus-
trial processes that range from the intensification of heat and mass transfer processes in chemical
reactors to powder production in metallurgy. The production of thin films on substrates placed
in the grooves of a rotating disk is refereed to as ‘Spin Coating’ in literature and this technique is
employed in coating a very thin and uniform film of photoresist on silicon wafers for integrated cir-
cuits or of a layer of very thin magnetic paint on the substrate, magnetic storage disks, fabrication
on thin uniform layers of plastic scintillator on supporting aluminized mylar and so on.

In spite of the difficulties in modeling this flow mathematically due to the variation of accel-
eration along the radius, the flow over a spinning disk has lent itself more naturally to potential
technological exploitation due to the possibility of controlling the local accelerations. The final
thickness of the film and the uniformity in the thickness are central issues in these applications
and they are observed to be influenced by several factors such as the viscosity of the liquid film,
different spin-up protocols, heat and mass transfer processes and so on.

Since the pioneering study by Emslie et al. (1958) on the hydrodynamic analysis of the flow
of a Newtonian fluid on a spinning disk, a number of theoretical and experimental studies of the
spin-coating process that include modeling of flow over a rotating disk, wave generation in the
liquid film moving on the surface of a rotating disk and the stability characteristics of a thin
film on a rotating substrate, have been reported (Reisfeld et al., 1991; Kitamura, 2001; Usha et

al., 2005). The presence study addresses the dynamics and stability characteristics of a viscous
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conducting film over a spinning disk in the presence of a transverse magnetic field. It is observed
that infinitesimal disturbances decay for small wave numbers for different values of Hartmann
number considered and that they are transiently stable for larger wave numbers.
2. MATHEMATICAL FORMULATION

Consider a film of viscous conducting fluid on a rotating disk. A system of cylindrical coordi-
nates (r, 6, z) that rotates with the disk at an angular velocity Q about the z-axis is used, where
r measures the radial distance from the center of the disk, 8 is the angle from some fixed radial
line in the horizontal plane and z measures the distance vertically upward from the solid surface
of the disk. A uniform magnetic field By acts parallel to the axis of rotation of the disk (Figure
1). The liquid-gas interface is located at z = h(r,t), where h is the film thickness as a function of
r and ¢t. The non-dimensional governing equations and boundary conditions are
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where € = ho/L is the aspect ratio, Re = Ughg/v is the Reynolds number, F = /UZ/ghy is the
Froude number, We = o/pQ*Lhj is the Weber number and M is the Hartmann number given by
M? = 0B2hZ/u. The dependent variables u, v, w and p are expanded in powers of € as (u, v, w, p) =
SN € [, 00w pM] and substituted in equations (1) - (6) and the resulting zeroth

and first order equations are solved and the evolution equation is obtained using (4) as
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The evolution equation is solved numerically using Crank-Nicolson finite-difference scheme and
the results for the film thickness and the influence of magnetic field on the rate of thinning will be
discussed during th talk. In what follows, the stability characteristics of (7) describing the shape
of the film thickness as a function of space and time is examined using linear theory.
3. DESCRIPTION OF TIME-DEPENDENT BASIC STATE

As the film is draining due to centrifugation, the basic state is time dependent and it is assumed
to be flat. The film thickness is independent of the radial position and the governing base state

behaviour is obtained as
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with h(0) = 1. Figure 2 shows the basic state film thickness for principal values of the evaporation
parameter E and the Hartmann number M. It is observed that film thickness decreases mono-
tonically as time goes to co. The effect of Hartmann number M is to enhance the film thickness
irrespective of the value of evaporation parameter E. Evaporation and drainage are the causes for
thinning of the fluid layer when E > 0. As Hartmann number increases, the film takes a longer
time to thin down to a prescribed height.
4. LINEAR STABILITY ANALYSIS AND DISCUSSION

The linearised disturbance equation is obtained from equation (7) by perturbing the basic state
by a small amount 1 (h = h(t) + & 5(r,t)) and substituting in (7) and linearising in disturbance

amplitude ‘¢’ as
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Assuming 7 in the form n(¢,t) = H(t)e™¢, the equation for normal mode amplitude H(t) is

obtained as
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where k = \/eko. The extremum point in time for |H| occurs whenever a;(t)k*/e — az(t) = 0
which gives k2 = € ag(t)/a;(t) where k. is cut off wave number, which increases with increase in
Hartmann number.

Figure 3 presents the normal mode amplitude for a disturbance which is (a) Stable - (k? < k?),
(b) Transiently stable - (k? = k?) and (c) Unstable - (k? > k?) for Hartmann number M = 0 and
2 and evaporation parameter ¥ = (. Since the cut off wave number k. increases with the increase
in Hartmann number, the effect of magnetic field is to enhance the stability of a thin non-uniform
conducting film flow on a rotating disk.

Figure 4 shows the disturbance amplitude as a function of time for Re = 6.0 when k = 4.5; M =
0 and k. = 19.5; M = 2 for the transiently stable behaviour. It is observed that |H/Hp| exhibits
two regions - one in which the disturbance is stable and the other in which it is transiently stable.
The disturbance amplitude increases initially, reaches a maximum and then decays monotonically.
The disturbance amplitude takes a value below its initial value as time increases.
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Figure 1. Schematic representation of Figure 2. Basic state film thickness for prin-

film flow on a heated rotating disk. cipal values of the evaporation parameter and

different values of Hartmann number.
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Figure 3. Normal mode amplitude for a dis- Figure 4. Normalized disturbance amplitude

turbance when Re = 6.2, ¢ = 0.01, £ =0 and over time when Re = 6.0, ¢ = 0.01, F =

M =0, 2. (a) Stable (b) Transiently stable 0, 0.0012, —0.0012 and M =0, 2.

(c) Unstable.



