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Introduction

The dependence of numerical solutions of moving contact
line phenomena on grid-spacing has recently been brought
to attention [5, 6, 3, 2]. Here we use a numerical model
to demonstrate the scaling of contact line numerical so-
lutions. We show that our model introduces an effective
slip through the grid-spacing in the numerical algorithm
[3]. We then implement a dynamic contact angle model
that is developed based on a hydrodynamic description of
the dynamic contact line [1] and that serves as the bound-
ary condition at the moving contact line. This appears
to eliminate the contact line singularity and represents a
well-posed problem, and results in converged solutions.

Our numerical model is an extension of the “Gerris”
code of Popinet [4]. The model employes a volume-of-
fluid (VOF) method to track the interface, and a height-
function methodology within the “Continuum Surface
Force” (CSF) framework for the implementation of the
surface tension force. A contact angle is prescribed at the
contact line as a boundary condition.

Numerical Results

Consider a liquid pool of dimension L, consisting of two
fluids of equal viscosity µ and density ρ, with surface ten-
sion σ between them. A solid plate is withdrawn at a
constant velocity Uw, in the direction opposite the grav-
itational acceleration g. The initial Reynolds number
Re = ρUwL

µ
= 4 and capillary number CaµUw

σ
= 0.03.

Simulations are run in a non-dimensional 1x1 domain,
with the lower fluid initially at a height of 0.4, at a time
step of 1 × 10−5, to steady state.

A no-slip boundary condition is imposed along the entire
solid boundary; our numerical model introduces an effec-
tive slip on the scale of the grid size, as per the Navier-slip
law. We first show that the numerical solutions depend on
grid-spacing, by applying a constant contact angle θ = 90.
The results are shown in Fig. 1; Fig. 2 shows interface
profiles at different grid resolutions. These results show
that the solutions do not converge with grid refinement.
In order to evidence the stress singularity, the shear rate
along the solid boundary is plotted in Fig. 3. As predicted,
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shear stress diverges with grid refinement confirming the
stress singularity at the contact line.

We now consider a contact angle boundary condition
model based on the theoretical analysis of Cox [1]. In
Cox’s analysis, for a viscous flow (Re ≤ 1), the macro-
scopic dynamic contact angle θmacro is related to the
molecular contact angle θmicro

G(θmacro) = G(θmicro) + Ca ln(ε−1) + o(Ca) (1)

where ε is the phenomenological slip length and the func-
tion G is defined in [1]. Sheng and Zhou [5] showed that
Eq. 1 is well approximated by

cos(θmicro) − cos(θmacro) $ 5.63Ca ln(Kε−1) (2)

where K is a constant depending on the slip model.
In our numerical model, θmicro together with θdyn con-
tribute to the geometric boundary condition for the solu-
tion of the macroscopic hydrodynamic equations, where
θdyn = F (Ca, θeq , ...) is the velocity dependent dynamic
contact angle and θeq is the equilibrium contact angle.
We first show that the scaling of θ presented by Eq. 2
is demonstrated in our simulations. We vary the contact
angle boundary condition θnum so that all the solutions
yield the same macroscopic contact angle θmacro at dif-
ferent mesh resolutions. The macroscopic contact angle
θmacro is predicted from the interface shape in the nu-
merical simulations. We chose two sets of θnum. In each
set, θnum is varied in a manner which yields the same
interface deformation at different grid-spacing resulting a
similar macroscopic contact angle for all the cases. In
Fig. 4, we plot cos(θnum) − cos(θmacro) as a function of
the 5.63Ca ln(Kε−1) for θnum = 90◦, 84◦, 78◦, 72◦, 63◦

and θnum = 114◦, 108◦, 102◦, 97◦, 90◦ corresponding to
grid sizes ∆ = 1/512, 1/256, 1/128, 1/64, 1/32. Here,
∆ plays the role of the slip length. An excellent fitting
curve is obtained by allowing K=0.2 [5]. Our numeri-
cal results, therefore, support the validity of our contact
angle boundary condition model. As expected, the con-
tact angle increases as the grid-spacing decreases, thereby
allowing the surface tension force to balance the stress sin-
gularity. Our results also suggest that the contact angle
boundary condition θnum scales with the numerical slip
length logarithmically.

Closure

We have presented further evidence of the mesh depen-
dence of interfacial flow solutions that involve moving con-
tact lines, and demonstrated a logarithmic dependence of
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the micro-scale contact angle on the slip length that arises
from our numerical discretization. On the basis of simula-
tions, we have shown that cos(θnum)−cos(θmacro) depends
linearly on Ca ln(ε−1). This scaling relationship can serve
as a means to evaluate θnum as a function of grid spac-
ing ∆ that yields mesh independent solutions of moving
contact line phenomena.
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Figure 1: Dependence of the contact line location on grid-
spacing, at non-dimensional time τ .
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Figure 2: Steady state interfaces at different grid resolu-
tions.

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-1000 -900 -800 -700 -600 -500 -400 -300 -200 -100  0

y

dv/dx

64x64
128x128
256x256
512x512

Figure 3: Steady state shear rates at different grid resolu-
tions.
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Figure 4: The contact angle boundary condition θnum as
a function of the Ca ln(Kε−1). The dashed line shows the
plotted fit using Eq. 2 and K = 0.2
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