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Abstract

In this paper the propagation of disturbance signals in a uniformly thin viscous liquid sheet of in-
finite extent which is in contact with a passive ambient medium is investigated. The disturbances
considered are induced by local external pressure perturbations moving on the sheet interfaces.
The tool of analysis is the Fourier-Laplace transform of the linearized perturbation equations, and
the inverse Fourier-Laplace transform for the numerical reconstruction of the amplitude of the
interface deflections. Symmetric (varicose) and antisymmetric (sinuous) disturbances are investi-
gated in the long time limit by numerical signal evaluation. The exact disturbance responses are
compared with their longwave approximations.

1 Introduction

Thin viscous liquid sheets are sensitive to external disturbances, such as pressure fluctuations
along their interfaces. In liquid film coating, falling sheets of this kind are used to deposit a
thin and uniform liquid layer on moving substrates. In this and other applications, maintaining a
uniform undisturbed liquid sheet is desired. Due to the rather low relative velocity of the sheet and
the low density and viscosity of the ambient medium, the response of the sheet to disturbances is
essentially dominated by viscosity, capillarity and inertia of the sheet itself, while the interaction
with the ambient medium can be reduced to external pressure distributions acting on the free
surfaces of the sheet. Further more, the elongation of a sheet falling under gravity may be ignored
for small Bond number Bo = ρgh2/γ, with the density ρ, the gravitational acceleration g, the
surface tension γ and the (local) sheet thickness h.

In this framework, the unperturbed plane liquid sheet of infinite extent and constant thickness may
be considered appropriately in its rest frame. In a linear stability analysis for this configuration
Lin et al. [9, 10] showed that the sheet is stable against small perturbations. Local variations of the
external pressure will therefore generate a surface deflection coupled with a fluid flow within the
liquid sheet, resulting in a wave motion, which separates, due to symmetry, into so called sinuous
and varicose modes.

Lin and Roberts [11] investigated waves on falling sheets experimentally for aqueous glycerine and
gelatine solutions with viscosities more than one order of magnitude higher than pure water, and
identified sinuous and varicose modes of curtain waves, generated by a solid obstacle puncturing
the falling liquid sheet. De Luca and Costa [8] presented an asymptotic expansion for the surface
deflection generated by a disturbance on an inviscid falling sheet and compared the wave patterns
with experiments for low viscous sheets.

Recently, an investigation of the response of thin viscous liquid sheets to instantaneous and per-
sistent (oscillating) point and line sources has been undertaken in [4, 12, 13] in the framework of
long wave approximation. In the present paper, the long time asymptotic response to steady per-
sistent perturbations is investigated numerically both for varicose and sinuous perturbation forms,
extending earlier work presented in [3, 5].
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2 Formulation of the Problem

The linear response of a uniform viscous liquid sheet (of density ρ, kinematic viscosity ν, surface
tension γ) of infinite extent to localized pressure disturbances will be investigated. Fig. 1 (a) shows

(a)

varicose response

-
6

z

x

(b)

sinuous response

-
6

z

x

Figure 1: Sketch of a thin viscous liquid sheet (a), perturbation modes (b).

a sketch of the sheet with a passive ambient medium adjacent to it, which exerts the pressure
distributions p±(~x‖, t) on the sheet interfaces Σ±, with the twodimensional vector in the xy–
plane ~x‖ = (x, y). For constant pressures p+ = p− = p0, flat interfaces h± = ±H/2, a constant
velocity profile ~u0 = U0~ex and a constant pressure p = p0 in the sheet provide a solution of the
governing equations and boundary conditions. This basic flow may be considered in the rest frame
of the fluid, i.e. with U0 = 0. The pressure p0 may be considered as reference (i.e. as p0 = 0).

Small local deviations of p± from p0 induce a flow in the sheet, causing small fluctuations η± of
the interfaces around its basic state: h± = ±(H/2+η±), coupled with small velocity and pressure
fluctuations, ~up and pp, respectively. In Fig. 1 (a) (localized) pressure disturbances moving with
constant velocity ~V act on the interfaces. A reflection symmetry of the basic state with respect to
the plane z = 0 allows to consider varicose perturbations, that act symmetrically on the interfaces
(p− = p+), and sinuous perturbations, that act antisymmetrically (p− = −p+), separately, cf. Fig.
1 (b), with the response amplitudes η− = η+ and η− = −η+, respectively.

The linearized perturbation equations are conveniently solved by a twodimensional Fourier–
Laplace transformation in the xy-plane and in time, see [4] for details. In the sequel only twodi-
mensional vectors will be considered and the subscript ‖ will be dropped accordingly. The am-
plitudes η+ of the varicose and sinuous interface deformations, ηv,s, are obtained by an inverse
Fourier–Laplace transform as

ηv,s(~x, t) = −
1

2π

∫

d~k ei
~k · ~x 1

2πi

c+i∞
∫

c−i∞

dω eωt k P̃(~k, ω)

Dv,s(k, ω)
, c > 0 , (1)

from the linear perturbation equations, cf. [4], stated here already in dimensionless terms by nor-
malizing lengths by H/2, time by H2/(4ν) and pressure by 4ρν2/H2. P̃(~k, ω) denotes the
Fourier–Laplace transform of the pressure disturbance p+(~x, t) and Dv,s(k, ω) the varicose and
sinuous dispersion function, respectively:

Dv(k, ω) = Γ2 k3 + (k2 + l2)2 coth(k) − 4k3l coth(l) , (2)

Ds(k, ω) = Γ2 k3 + (k2 + l2)2 tanh(k) − 4k3l tanh(l) , (3)

with the twodimensional wave vector ~k, k = |~k| and l2 = k2 + ω and with the characteristic
number of the sheet

Γ =
√

γH/(2ρν2) . (4)
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The singularities of the integrand in eq. (1), the zero curves ω = ω(k) of Dv,s(k, ω) = 0, lie
in the left half of the complex ω–plane, i.e. the response modes of the sheet are absorptive [13].
A qualitative analysis of the varicose and sinuous spectra of the sheet has been performed in
[13]; it revealed that each one consists of infinitely many branches ωα(k), of which only two
are “soft”, with lim

k→0
ωα(k) = 0, while the remaining are “hard”, i.e. bound away from ω = 0.

A quantitative insight into the structure of the sheet spectrum will be obtained by a numerical
parameter continuation method, cf. [6].

3 Results and Discussion

3.1 Disturbance and Response

A persistent localized disturbance p+(~x, t) = P (~x + ~V t) θ(t), moving with velocity ~V in the rest
frame of the sheet and acting for t > 0, is considered. A formula for the response of the sheet in
the long time limit (t → ∞) is then evaluated numerically. It is convenient to analyze the response
in the rest frame of the perturbation, i.e. to carry out the transformation ~X = ~x + ~V t. The spatial
distribution of the pressure, P ( ~X), is represented as P ( ~X) = P0 f( ~X), with a shape function
f( ~X).

For varicose pressure disturbances the sheet is statically equilibrated for any pressure distribution,
i.e. the total force exerted by the ambient pressure on the sheet vanishes, since by definition p+ =
p−. For the investigation of the varicose response a normalized Gaussian shape function fG, with
its Fourier transform f̃G,

fG( ~X, a) =
1

a2π
e−

r
2

a2 , f̃G(~k, a) =
1

2π
e−

k
2

a
2

4 , (5)

with r = ‖ ~X‖ =
√

X2 + Y 2 and
∞
∫

−∞

∞
∫

−∞
fG( ~X, a) dX dY = 1, will be used in the following

sections.

A sinuous pressure disturbance, with p+ = −p−, however, has to be chosen in such a way that
the sheet is statically equilibrated, i.e.

∫∫

p+(~x, t)d~x = 0. In this paper, the form function f0 =
−∆fG, with its Fourier transform f̃G, is chosen for such a distribution:

f0( ~X, a) =
4

a4π

(

1 −
r2

a2

)

e−
r
2

a2 , f̃0(~k, a) =
k2

2π
e−

k
2

a
2

4 . (6)

In the limit t → ∞ the reponse signal becomes:

ηs,v ∞( ~X) = −
P0

2π

∞
∫

−∞

∞
∫

−∞

d~k ei
~k · ~X k f̃(~k)

Ds,v(k, i~k · ~V )
. (7)

At large enough distances from the perturbing source, the two “soft” branches ωs,v±(k), for which
lim
k→0

ωs,v±(k) = 0, and even the long wave parts (k → 0) of these branches, are expected to

dominate the signals, cf. [4, 13]. The Fourier integral, eq. (7), will be evaluated numerically both
for the exact dispersion functions of the sheet, eqs. (2)–(3), and for their long wave approximations
by using the algorithm A698 [7] for adaptive multi-dimensional numerical integration, which has
already been applied in [3] to this problem.
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3.2 Signal Evaluation: Varicose Excitation

The long wave approximations of the varicose “soft” branches to lowest order, ωv±(k) ≈
±
√

4 − Γ2 k2 − 2k2, are real (i.e. purely absorptive) for Γ2 < 4 and oscillatory (with complex
conjugate dispersive parts) for Γ2 > 4, cf. [12]. Fig. 2 shows part of the varicose spectrum derived
numerically from eq. (2) for Γ = 1. Together with the two soft branches, denoted by ωv+ and
ωv−, respectively, the first three hard branches are shown in Fig. 2 (a); they are strongly damped
compared to the soft modes. In Fig. 2 (b) the real parts of the soft branches ωv±, obtained nu-
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Figure 2: Real part <(ω) of the varicose spectrum for Γ = 1: soft and hard branches (a), magnified
view of soft branches (b). Imaginary part =(ω) = 0, “l.w.app” and “s.w.app” denote long wave
and short wave approximation, respectively, cf. [13].

merically, are plotted and compared with the asymptotic approximations derived in [13] for long
waves, k � 1, and short waves, k � 1, respectively.

In the lowest order of the long wave approximation an analytical expression for the response of the
liquid sheet to a persistent point disturbance pe( ~X, t) = Peδ( ~X)θ(t) was presented in [4]. This
analytic expression is ideally suited for the validation of the numerical evaluations of the signal
integral (7). An inspection immediately shows, that the procedure of [4] can be extended straight-
forwardly to the derivation of an analytic form also for the excitation of Gaussian shape [1]. In
Fig. 3 results of the numerical integration of eq. (7) are presented for Γ = 1 (left) and Γ = 10
(right) for a persistent varicose disturbance p+( ~X, t) = P0 fG( ~X, 1/10) θ(t), for the exact disper-
sion function, eq. (2), (curve (c) in Fig. 3), and its lowest order long wave approximation, (curve
(b) in Fig. 3). The result for the numerical integration of eq. (7) with the long wave dispersion
relation thereby agrees perfectly with the evaluation of analytical expression for the response to
the Gaussian excitation [1], plotted as crosses (a) in Fig. 3. With increasing distance from the
perturbation source, for x � 4, the analytical response amplitude in the long wave approximation
approaches the response amplitude computed numerically with the exact dispersion function.

Since the dominant (long wave) varicose spectral modes are purely absorptive for Γ ≤ 2, the
response of the sheet to the pressure perturbation exhibits an aperiodic behaviour. For Γ > 2 the
dominant modes are oscillatory. Fig. 4 indicates that the (analytical) location of the wave crests
in the framework of long wave approximation for the excitation (5), derived along the lines of [4],
coincides with the wave crests obtained numerically from eq. (7) for the exact dispersion relation
at some distance downstream of the localized perturbation.
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Figure 3: Disturbance amplitude ηv(x, y) along the y–direction at different distances x from the
source, for Γ = 1 (left) and Γ = 10 (right), with V = 2Γ (rest frame of disturbance source).
Analytic form of the lowest order longwave approximation of the varicose sheet response [1] (a),
numerically evaluated signal with lowest order longwave dispersion function (b), and with the
exact dispersion function (c).

Figure 4: Response to a localized varicose disturbance (a = 0.1) for Γ = 126.3, V = 1.319Γ (rest
frame of disturbance). Contour lines (black): Location of the wave crests as computed by the long
wave approximation, along the lines of [1, 4].

3.3 Complex Varicose Excitation: Superposition

In this section, a disturbance of a shape described by a superposition of Gaussians of the form
fG( ~X − ~X0, a), with ~X0 = (X0, Y0) covering the rectangular region [−lx, lx] × [−ly, ly]:

fR(X,Y ) =
1

16 lx ly

(

erf
(

X + lx
a

)

+ erf
(

lx − X

a

))

·

(

erf
(

Y + ly
a

)

+ erf
(

ly − Y

a

))

(8)

is considered in order to illustrate the response to a distributed source. It is a smoothed approxi-
mation of the step function

θR(X,Y ) =
1

4 lx ly
(θ(X + lx) − θ(X − lx)) · (θ(Y + ly) − θ(Y − ly)) (9)

with the Heaviside function θ(x).
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Figure 5: Response of the liquid sheet to a varicose pressure disturbance of width lx = 0.1, ly = 20
for Γ = 10, V = 2Γ, in the rest frame of the disturbance (a). Disturbance amplitude along the line
y = 0 for different widths ly, with Γ = 10, V = 2Γ (b).

It causes, like the Gaussian shape function (5), an exponential suppression of the short wave
lengths. Fig. 5 (a) shows the varicose response of the sheet to a blade shaped pressure disturbance
with lx = 0.1, ly = 20. A straight wave crest is seen to build up in front of the perturbing source,
perpendicularly to its motion. From the edges of the region of perturbation waves are generated,
which merge some distance downstream in the wake of the source. In the immediate downstream
vicinity of the source, a triangularly shaped area with practically vanishing amplitude develops.
This area increases with increasing width ly of the source of perturbation. In the limit ly → ∞ the
source comes close to a line source, for which it was shown in [4] in the long wave limit that its
downstream response amplitude is infinitesimally small, yet with a finite integral deflection value
to compensate the upstream deflection amplitude as required by mass conservation. The response
amplitude of the sheet along the line y = 0 is shown in Fig. 5 (b) for different widths ly of the
perturbation, indicating an area of small amplitude, that increases with ly → ∞ and approaches in
the limit the line source response.

3.4 Signal Evaluation: Sinuous Excitation

Like the varicose part of the sheet spectrum, the sinuous spectrum consists of two soft branches,
denoted by ωs±, and infinitely many hard branches ωsα. Fig. 6 shows part of this spectrum derived
numerically from the dispersion function (3), for Γ = 1: the real (absorptive) parts of the soft
branches together with the first three hard branches ωs1,2,3, which are purely real and seen to be
very strongly damped compared to the soft ones.

The lowest orders for the real (absorptive) and for the imaginary (dispersive) parts of the long
wave approximation of the soft branches are given by [12, 13]

ωs±(k) ≈ ±iΓ k −

(

2

3
+

4

15
Γ2

)

k4 , (10)

with the long wave sinuous dispersion function

Ds(k, ω) = k (ω − ωs+)(ω − ωs−) . (11)

The sinuous soft modes are nondispersive in the leading order, with a dimensionless phase speed
cph = |={ωs±}|/k = Γ. The lowest order absorptive term is ∝ k4. Compared with the leading
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Figure 6: Real part <(ω) of the spectrum for Γ = 1: sinuous modes.

order long wave approximation of the varicose soft branches, Fig. 2, the approximation of the real
(absorptive) part of the sinuous soft branches by the leading order long wave asymptotics is less
accurate, as a plot of these branches in Fig. 7 indicates.

 -10

  -8

  -6

  -4

  -2

   0

 0  1  2  3  4  5

ℜ
{ω

}

k

ωs+
ωs-

l.w. app.
s.w. app.

-1.0

-0.5

 0.0

 0.5

 1.0

 0  1  2  3  4  5

ℑ
{ω

}

k

ωs+
ωs-

l.w. app.

Figure 7: Sinuous soft branches for Γ = 1: Real part <(ω) (a), Imaginary part =(ω) (b).
“l.w.app.”: long wave approximation, “s.w.app.”: short wave approximation.

The long wave asymptotic expansion of the sinuous soft branches ωs± has been extended here
to higher orders as compared to ref. [13], by using the symbolic algebra software MAPLE. For
illustration, terms of the expansion are presented here up to O(k9):

ωs±(k) = −

(

2

3
+

4

15
Γ2

)

k4 +

(

6

5
+

304

315
Γ2 +

124

2835
Γ4

)

k6

−

(

788

315
+

44948

14175
Γ2 +

7108

17325
Γ4 43688

6081075
Γ6

)

k8 (12)

±iΓ

{

k −
1

2
k3 +

(

133

120
+

34

315
Γ2

)

k5 −

(

2

9Γ2
+

2587

1008
+

1889

2835
Γ2 +

2764

155925
Γ4

)

k7 .

In the range 0 < k < 0.5 the quality of approximation of the soft spectrum by the asymptotic
expansion improves with increasing truncation order in the range of orders considered. For O(k17)
the accuracy is even well below 0.5% for k < 0.4, cf. [1]. It, however, happens for any fixed
value of k, that the accuracy of approximation increases for a while with increasing order of
truncation, but then decreases with further increase of the order. This is typical for semiconvergent
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(asymptotic) expansions. For large wave numbers, k → ∞, the highest order with nonzero real
part in the truncated expansion dominates the absorption, so that the (alternating) expansion has
to be truncated at an order with negative real coefficient.

The difference in quality between the long wave approximation of the varicose and sinuous soft
branches has also consequences for the numerical evaluation of eq. (7) for sinuous perturbations.
In [3] it has been noticed that for sinuous perturbations the restriction to the leading order long
wave approximation of the soft branches, eq. (10), instead of the exact dispersion relation yields a
rather poor approximation of the response amplitude for localized perturbations, in contrast to the
good approximation for varicose perturbations, to this order. However, if a pressure distribution
with a larger spatial extension a is considered, the exponential decay of (the Fourier transform of)
f0( ~X, a) in the integrand of eq. (7) cuts off the influence of the short waves, due to the stronger
localization (width ∝ 1/a) of the shape function in the wave number space, and so a better approx-
imation of the response by the long wave modes is to be expected. Fig. 8 shows, for f0( ~X, 10),
a comparison of the sinuous response amplitudes using the exact dispersion function (3) and the
long wave approximation, at different approximation orders [13] of ωs±(k). The long wave ap-
proximation up to O(k13) exhibits an oscillatory behaviour to the left of the major wave trough
and crest for x < 1000, cf. Fig. 8 (a)–(c), which is due to the dispersive terms of O(k3). This
behaviour is not present, in this strength, in the numerical evaluation of the exact signal (7). How-
ever, the higher order approximation gives a significantly better approximation at large distances,
x � 1000, compared with the leading order, eq. (10), cf. Fig. 8 (d).
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Figure 8: Disturbance amplitude ηs(x, y) (in the rest frame of the disturbance source) of the
sinuous disturbance along the (transverse) y–direction, at different distances x from the source,
for Γ = 10, V = 2Γ: x = 300 (a), x = 500 (b), x = 1000 (c), x = 2000 (d).

Fig. 9 shows, for illustration, the response of the sheet to sinuous (a) and varicose (b) disturbances
with the shape function f0( ~X, 1) and with V = 2Γ, for Γ = 1 and Γ = 10, respectively. With
increasing Γ, i.e. with increasing characteristic phase speed cph, the deflection amplitude of the
response for both modes becomes increasingly oscillatory ahead of the moving pressure distur-

8



bance. Sinuous pressure perturbations cause almost straight wave crests that enclose a wedge
shaped area in the wake of the disturbance with very small amplitude. This wedge corresponds
to a twodimensional Mach cone of opening half angle θ = sin−1 Γ/V , caused in a nondispersive
medium by a pointlike disturbance source moving faster than the phase speed cph = Γ.

Γ = 1, sinuous perturbation Γ = 100, sinuous perturbation

Γ = 1, varicose perturbation Γ = 100, varicose perturbation

Figure 9: Propagation of disturbances for the shape function f0( ~X, 1), V = 2Γ (rest frame of
disturbance): Numerical results for exact dispersion relations for sinuous perturbation and varicose
perturbation.

4 Conclusions

The linear response of a viscous liquid sheet to moving persistent pressure disturbances has been
investigated. The response to sinuous and varicose excitations, obtained by the Fourier–Laplace
technique, has been presented in terms of an integral representation for the surface deflection am-
plitude of the sheet. The response signal is determined by the shape of the perturbing source,
on the one hand, and by the structure of the spectral functions Ds,v(k, ω) of the sheet, on the
other hand. The varicose and sinuous parts of the sheet spectrum consist of infinitely many hard
branches ωv,sα(k) and of two soft branches ωv,s±(k), which dominate the response of the sheet in
the long time limit. The response amplitude to a steady excitation becomes in this limit stationary
in a reference frame moving with the perturbation source and can be expressed as a twodimen-
sional Fourier integral. This integral has been evaluated numerically, in its exact form and in an
asymptotic approximation.

For varicose perturbations the exact signal has been compared with an analytic form obtained in
the frame of the lowest order long wave approximation [4], showing good agreement for larger
distances from the source. The response to sinuous disturbances encloses a wedge shaped region
with very small amplitude, similar to a Mach cone. Its opening angle is determined by the speed
ratio cph/V = Γ/V . The velocity Γ, showing up in it, keeps significance far beyond small (linear)
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perturbations: it plays a key role even in the highly nonlinear process of edge retraction on a plane
viscous sheet, cf. [2, 14].
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