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Surface instabilities and structures in fluid thin layers are studied using the lu-
brication approximation [1]. The starting point is the governing equation for
the film thickness that includes surface tension gradients (∂xσ), buoyancy forces
(ρgh) and Van der Waals forces (Π(h)) between substrate and free surface:
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Here ∇2 and ∆2 are the operators in horizontal direction. The system is extended
to a binary mixture if one assumes the surface tension as a (linear) function on
both temperature and concentration ∇2σ = −σθ∇2θ − σn∇2n.

Temperature and relative concentration are determined by their transport equa-
tions:
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with the thermal and mass diffusivity (κth, D), and the heat and concentration
gradients β and βn. Here −→u and w are the velocity components in the horizontal
and vertical directions, respectively. Note that concentration gradients couple to
temperature by the Soret-effect.

Oscillatory and monotonic long wave Marangoni instability in a binary-liquid
layer with deformable interface in the presence of Soret effect was studied using
two simplified sets of equations [2,3]. The vertical dependency of the temperature
and concentration was approximated with polynomials and the convective term
in equations (2) and (3) was neglected. Comparing the linear stability diagrams
for the simplified and complete models (see Fig. 1) one can observe that the both
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Figure 1: Linear-stability diagrams for the models express by the simplified equation
system (left) [3] and using the 3D set of equation (right).

conductive and oscillatory instabilities are obtained, but for different Marangoni
number values. One needs higher Marangoni number in the case of complete 3D
model in order to obtain instabilities.

Using the simplified model we have studied the mechanism of the oscillatory
instability induced by the Soret effect. For small Soret numbers the film height
(gray scale) and the concentration field (contour lines) are superposed in the final
stationary state (Fig. 2b). In the case of the oscillatory instability (bigger Soret
number) the movement of the drop is due to the concentration difference between
the two sides of the drop (Fig. 2c). The next step is to compare the non-linear
behavior in the complete and simplified model and to deeply clarify the influence
of the Soret effect on the oscillatory instability.
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Figure 2: Nonlinear simulations using the simplified model for different Soret numbers:
a) incipient development of the drops (calculated for χ = −0.8, similar for χ = −1.2),
b) stationary final drop for χ = −0.8 and c) traveling final drop for χ = −1.2.
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