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Recently we proposed a phase field model for Marangoni convection in compressible fluids of van der Waals
type far from criticality. The phase field models introduce an order parameter to the usual set of state
variables in order to provide an explicit indication of the thermodynamic phase in each point of the system.
We choose the fluid density p as phase field function. So p = 1 designates the liquid phase and p = 0 the
vapor bulk. With the help of the phase variable p, all the system parameters can be expressed as functions
varying continuously from one medium to the other. Therefore, the problem is treated like an entire one phase
problem and the interface conditions are substituted by some extra—terms in the Navier—Stokes equation.
The theoretical description is based on the Navier—Stokes equation with extra phase field terms
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the classical heat equation

dTl
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and the continuity equation 5

(% + V- (p?) = 0.
The model previously developed for two—layer geometry [1—4] is extended in this paper to drops and
bubbles. We solve the problem numerically, starting from an initial noise density. A randomly distributed
initial density may act as seeds for phase separation in the van der Waals fluid. In the later, drops or bubbles
are found by nucleation and coarsening. The system evolves to drops in a vapor atmosphere or bubbles in

a liquid, depending on the total mass.

Figure 1: Drop formation in a vapor atmosphere under microgravity conditions.



Figure 2: The boundary conditions for the density field at the solid walls may favour the drop to be in
contact with the solid surface.

Figure 1 displays time series in (z,z) plane for the formation of a liquid drop in a vapor atmosphere for an
isothermal system without gravity.

The boundary conditions for the density field at the solid walls play an important role for the contact
angle at the solid surface and determine the position of the droplet. In our model we control the contact angle
through the density at the solid boundary pg [5]. L. Pismen et al. showed that, for solid—fluid interactions
short ranged compared to the thickness of the diffuse vapor—liquid interface, the only condition enforced on
the solid surface is

p=ps-

Starting from the Young—Laplace relation, for the stresses balance on the contact line, an analytical relation
between the static contact angle and the solid density pg is established [5]:

cos = =146 p% — 4 p%. (1)

Thus, for ps = 0 the liquid drop will be pushed away from all the four walls and, after a while, a single liquid
droplet will be obtained in the middle of the box ("no—wetting” case illustrated in Figure 1). For ps # 0 the
drop is attracted to the wall, the boundary conditions favour now the droplet to be in contact with the solid
surface (see Figure 2 for p; = 0.1). The situation illustrated in Figure 2 corresponds to a ”partial wetting”
case. Our aim is to compare quantitatively the phase field simulations with the analytical formula (1), to
adjust the phase field model for drop motion on inclined substrate under gravity effects and to investigate
the dynamic contact angles of a spreading droplet at different velocities of the contact line.
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