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The Ericksen–Leslie equations for anisotropic materials are used to model a blade-coating process in

which a nematic liquid crystal is coated onto a planar substrate. Such a process has recently been

used to deposit liquid crystal and polariser layers in the construction of display devices. The direction

and uniformity of the mean molecular alignment (described by a unit vector called the director) are

important factors for the performance of the devices, particularly when this alignment is “frozen in”

within a polariser layer. We restrict our attention to thin films and small director distortions, and we

study the two particular cases in which either orientational elasticity effects or flow effects dominate

the orientation of the liquid crystal. In both cases we obtain analytical solutions for the fluid velocity

and pressure. When orientational elasticity effects dominate we obtain an analytical solution for the

director. When flow effects dominate we find that the director is uniform in the bulk of the liquid

crystal and exhibits thin orientational boundary layers.

1 Introduction

The aim of this paper is to study a blade-coating process in which a nematic liquid crystal
is coated onto a planar substrate moving parallel to itself. In previous work [1] we described
the flow and alignment behaviour of the liquid crystal in the region under the blade; here we
describe the flow and alignment patterns within the liquid crystal layer after emerging from
the region under the blade (drag out) or before entering the region under the blade (drag
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Figure 1: Geometry of the mathematical model of blade coating of a nematic liquid crystal.
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in), as shown in Fig. 1. Such a process has been used to deposit liquid crystal and polariser
layers in the construction of display devices [2]. The direction and uniformity of alignment
are important factors for the performance of the device, particularly when this alignment
is “frozen in” within a polariser layer. We are therefore particularly interested in the mean
molecular orientation of the liquid crystal, described by a unit vector n, called the director.
We use both analytical and numerical techniques to analyse the Ericksen–Leslie equations
[3, 4] governing the fluid velocity, pressure and director orientation, in cases when both the
aspect ratio of the film of liquid crystal and the distortion of the director field are small.

2 Governing equations

We consider a thin film of liquid crystal of constant density ρ and surface-tension coefficient
γ, lying on a planar substrate z = 0 which moves away from (or towards) a fixed blade with
constant velocity U i (or −U i), with U > 0. We will assume that a steady state has been
reached, that the dependent variables (velocity, pressure and director) have no y dependence,
and that the director remains in the xz-plane. These assumptions have been shown to be valid
for many common liquid crystals and for moderate flow rates [5]. The velocity v, modified
pressure p̃ and director n can therefore be written as v = (u(x, z), 0, w(x, z)), p̃ = p̃(x, z) and
n = (cos θ(x, z), 0, sin θ(x, z)). The standard continuum equations for the fluid dynamics of
anisotropic materials are the Ericksen–Leslie equations [3, 4, 5] which have frequently been
shown to model such systems accurately. These equations are nonlinear partial differential
equations, and we will employ certain simplifying assumptions in order to obtain analytical
solutions.
Using the standard thin-film approximation [6] based on the assumption that the liquid
crystal film deposited onto the substrate is “thin”, that is, the length scale of the film in
the z direction H is much smaller than the length scale in the x direction L, so that the
aspect ratio ε of the film, defined as ε = H/L, is small, the governing equations can be
greatly simplified. The appropriate thin-film Ericksen–Leslie equations, which consist of a
mass-conservation equation and balance laws of linear and angular momentum, are

0 = ux + wz, (1)

0 = p̃x − (g(θ)uz)z + O(ε), (2)

0 = p̃z + G + O(ε), (3)

0 = E m(θ)uz −

[

f(θ) θzz +
1

2

df(θ)

dθ
θ2

z

]

+ O(ε), (4)

where

g(θ) = cos2 θ +
η2

η1

sin2 θ +
α1

η1

cos2 θ sin2 θ, (5)

f(θ) = cos2 θ +
K3

K1

sin2 θ, (6)

m(θ) =
α3

η1

cos2 θ −
α2

η1

sin2 θ, (7)

in which the αi are the Leslie viscosities [4], η1 = (α4 +α3 +α6)/2 and η2 = (α4 +α5−α2)/2
are two of the Miesowicz viscosities [7], and K1 and K3 are elastic constants. In formulating
these equations standard non-dimensionalisations and rescalings of the variables have been
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used (more details of which may be found in [1]). The non-dimensional gravity term in eq. (3)
is

G =
ρgH3

η1UL
, (8)

and the non-dimensional parameter E = η1UH/K1 in eq. (4) is the Ericksen number, a
measure of the ratio of viscous to elastic effects.
We will assume that the director lies parallel to the substrate at z = 0 and the fluid velocity
is equal to the velocity of the substrate. At the free surface h(x) we assume that the usual
normal and tangential stress balances hold and that the director lies parallel to the free
surface. With appropriate non-dimensionalisation the boundary conditions are therefore

u = 1, w = 0, θ = 0 on z = 0, (9)

uz = 0, p̃ = −Shxx, θ = εhx on z = h, (10)

where

S =
γH3

η1UL3
(11)

denotes the non-dimensional surface-tension coefficient. Note that the constant volume flux
of fluid along the channel per unit width, Q, given by

Q =

∫ h

0

udz, (12)

will be assumed to be prescribed a priori.
To make analytical progress we restrict our attention to small director-angle distortions; in
other words, scaling θ as θ = δθ∗ with θ∗ = O(1) we assume that δ � 1. Furthermore,
for a “flow-aligning” material (that is, one with α2α3 > 0 [5]) the flow-aligning angle θ0,
which is defined by θ0 = tan−1

√

α3/α3 and is the angle at which the director would orient
in the absence of any elastic terms, is usually small. Hence, at this point we have three
small parameters to consider, namely ε, δ and θ0; the possible orderings in these parameters
result in different sets of equations and boundary conditions. In this paper we will discuss
the following two orderings.
Case 1: ε ∼ δ � θ0 � 1. In this case orientational elasticity effects dominate flow effects
which are insufficient to increase θ significantly from its value at the boundary. The governing
equations (1)–(4) simplify to

0 = ux + wz, 0 = p̃x − uzz, 0 = p̃z + G, θzz = −Eεuz, (13)

where we have introduced the appropriate Ericksen number Eε = −(α3E)/(η1ε). Note that,
since ε ∼ δ, the leading order boundary condition on θ at z = h is θ = hx.
Case 2: ε � δ ∼ θ0 � 1. In this case flow effects dominate orientational elasticity effects
and θ achieves flow alignment. The governing equations (1)–(4) simplify to

0 = ux + wz, 0 = p̃x − uzz, 0 = p̃z + G, θzz = −Eθ0
(1 − θ2)uz, (14)

where we have introduced the appropriate Ericksen number Eθ0
= −(α3E)/(η1θ0). Note

that, since ε � δ, the leading order boundary condition on θ at z = h is θ = 0.
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The other possible orderings of the small parameters ε, δ and θ0 are either not considered
because they are not tractable analytically, or are rejected because they are not physically
realisable.

3 Drag out

First we consider the situation in which the substrate z = 0 is moving away from the fixed
blade. The leading order equations for the fluid pressure and velocity in Case 1 and Case 2 are
the same, and furthermore they are decoupled from θ; hence the solution can be calculated
directly from either eqs (13 a–c) or eqs (14 a–c) with boundary conditions (9) and (10) to be,
in both cases,

p̃(x, z) = G(h − z) − Shxx, (15)

u(x, z) = −
p̃x

2
(2h − z) z + 1, (16)

w(x, z) =
p̃xx

2

(

h −
z

3

)

z2 +
p̃x

2
hxz2. (17)

Substituting the solution (16) for u into eq. (12) and using (15) leads to the governing equation
for the free surface h, namely

Shxxx − Ghx =
3(Q − h)

h3
. (18)

The free surface profile can be computed numerically from (18). Furthermore, by linearising
about the uniform solution h = h∞ = Q (Q > 0) of (18) one may show that the decay of h
towards the uniform solution as x → +∞ is always monotonic.
From eqs (15), (16) and (18) we find that the solution for u may be written as

u(x, z) =
3(Q − h)(2h − z)z

2h3
+ 1, (19)
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Figure 2: Velocity (in the x direction) profiles at x = 1, 1.5, 2 in the drag-out problem, when
Q = 0.25, G = 1 and S = 1. Reverse flow occurs above the curve z = z0 on which u = 0
(indicated with a blue line) when h > 3Q = 0.75.
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so that the curve z = z0 on which u = 0 is given by

z0

h
= 1 −

[
3Q − h

3(Q − h)

]1/2

. (20)

Hence, if h > 3Q then there are regions of reverse flow (that is, regions in which u < 0)
(see Fig. 2). We also see from eq. (19) that uz = 0 not only at the free surface z = h, but
also when h = Q, when there would be a change in the sign of the shear. However, in this
situation, numerical solutions of (18) suggest that the free surface h is monotonic for all x,
so there is no change in the sign of the shear.

3.1 Case 1: ε ∼ δ � θ0 � 1

Substituting the solution (19) for u into the angular momentum balance (13d), integrating
twice and applying boundary conditions (9) and (10) leads to the solution for θ, namely

θ =
hx

h
z + Eε

(Q − h)(h − z)(2h − z)z

2h3
. (21)

In this case orientational elasticity effects dominate flow effects and we expect the flow to
have only a weak effect on the director angle. The solution in eq. (21) shows that the flow
changes the θ profile from a linear profile when Eε = 0 to a cubic function of z when Eε 6= 0
(see Fig. 3). As flow effects become more important, corresponding to increasing the Ericksen
number, the tendency of the flow to try to align the director, and thus distort it from the
linear profile, is seen.
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Figure 3: The director angle θ at x = 1, 1.5, 2 in the drag-out problem for Case 1, when
Q = 0.25, G = S = 1 and (a) Eε = 1 and (b) Eε = 10. The curve on which θz = 0 is indicated
by a red line.

5



0.2

0.4

0.6

0.8

1

1 2

x

1.5

z

free surface z=h(x)

 drag out

Figure 4: The director angle θ at x = 1, 1.5, 2 in the drag-out problem for Case 2, when
Q = 0.25, G = S = 1 and Eθ0

= 104.

3.2 Case 2: ε � δ ∼ θ0 � 1

In general, equation (14d) for the director angle θ must be solved numerically. However, when
Eθ0

� 1 flow effects dominate orientational elasticity effects and the solution for θ in the bulk
is θ = 1 (equivalent to the unscaled value θ0) if uz > 0 and θ = −1 (equivalent to the unscaled
value −θ0) if uz < 0, with thin boundary layers where θ changes rapidly to its prescribed

boundary values, one near the substrate z = 0 of thickness E
−1/2

θ0

and another near the free

surface z = h(x) of thickness E
−1/3

θ0

. Thus, when Eθ0
� 1, applying boundary-layer analysis

[8] we find an appropriate composite, uniformly valid leading-order asymptotic solution for
θ, namely

θ ∼ −sgn(Q − h)

{

2 − 3 tanh2

((
3|Q − h|Eθ0

2

)1/2 z

h
+ β

)

+ φ

((
|Q − h|Eθ0

2

)1/3 h − z

h

)

+ 1

}

, (22)

where β = tanh−1
√

2/3, and φ(ζ) is obtained numerically by solving

φζζ = ζ(1 − φ2), φ(0) = 0, φ → −1 as ζ → +∞. (23)

Figure 4 shows the director profile given by eq. (22) and it clearly shows the boundary-layer
structures. Note that in this case the shear never changes sign, and thus neither does the
director orientation in the bulk.

4 Drag in

So far we have considered the situation when the substrate z = 0 is moving away from the
fixed blade; we now study the situation when the substrate is moving towards the blade. In
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Figure 5: The director angle θ at x = 2, 4, 6, 8, 10 in the drag-in problem for Case 1, when
Q = −0.25, G = S = 1 and Eε = 5. The curve on with θ = 0 is indicated by a blue line, and
the curve on which θz = 0 is indicated by a red line.

this case, the boundary conditions (9) should be replaced by

u = −1, w = 0, θ = 0 on z = 0, (24)

and the analysis above follows with minor differences. In particular, the free surface now
satisfies

Shxxx − Ghx =
3(Q + h)

h3
. (25)

Linearising this equation about the uniform solution h = h∞ = −Q (Q < 0) we can show
that the decay of h towards the uniform solution as x → +∞ is monotonic when S and G
satisfy

0 <
S

Q6G3
<

(
2

9
√

3

)2

' 0.01646, (26)

but is oscillatory otherwise.
In a similar way to the drag-out problem we find that if h > −3Q then there are regions of
reverse flow (that is, regions in which u > 0), and that there is a change in the sign of the
shear when h = −Q. The sign of the shear will be important in the next two subsections in
which we study the director orientation in response to the fluid flow.

4.1 Case 1: ε ∼ δ � θ0 � 1

The director profile has a similar form to that in the drag-out problem:

θ =
hx

h
z + Eε

(Q + h)(h − z)(2h − z)z

2h3
. (27)

Again, the flow effects change the θ profile from a linear to a cubic function of z (see Fig. 5).
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Figure 6: The director angle θ at x = 1.5, 3.5, 5.5, 7.5, 9.5 in the drag-in problem for Case 2,
when Q = −0.25, G = S = 1 and Eθ0

= 104.

4.2 Case 2: ε � δ ∼ θ0 � 1

In this case, as in the drag-in problem, boundary-layer analysis leads to the appropriate
leading order solution for the director in the form

θ ∼ −sgn(Q + h)

{

2 − 3 tanh2

((
3|Q + h|Eθ0

2

)1/2 z

h
+ β

)

+ φ

((
|Q + h|Eθ0

2

)1/3 h − z

h

)

+ 1

}

, (28)

where φ is given again by eq. (23).
Figure 6 shows the director profile given by eq. (28). In this case, the shear changes sign
within the film and thus the director orientation in the bulk also changes from +1 to −1,
accordingly.

5 Conclusions

Using the Ericksen–Leslie equations we have modelled a blade-coating process in which a
thin film of a nematic liquid crystal is deposited onto a planar substrate. Analytical results
were obtained by assuming that the liquid crystal film is thin and the director distortions are
small.
In the drag-out problem the decay of the free surface towards its uniform state far from the
blade was found to be always monotonic; furthermore, numerical results suggest that the free
surface is monotonic for all x. An analytical solution for the pressure and velocity was found,
and also for the director when elasticity effects dominate. In such a case, we showed that
the director is monotonic for small values of Eε. When flow effects dominate, the director
aligns with −θ0 in the bulk exhibiting thin boundary layers near the boundaries and, since
the shear does not change sign, neither does the alignment of the director in the bulk.
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In the drag-in problem it was found that the decay of the free surface towards its uniform
state far from the blade can be either monotonic (in which case the behaviour of the director is
qualitatively similar to that in the drag-out problem) or oscillatory, depending on the relative
strengths of surface tension and gravity. Again, an analytical solution for the pressure and
velocity is found, and also for the director when elasticity effects dominate. When the decay
of h is oscillatory we found that, when elasticity effects dominate, the film always contains
regions where θ is non-monotonic and, when flow effects dominate, θ changes its orientation
in the bulk from −θ0 to θ0, exhibiting thin boundary layers near the boundaries.
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