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We study numerically the contact line stability of a
constant volume (CV) of fluid spreading down an incline
(see Fig. 1), as an example of a flow with no transla-
tional invariance. Within the lubrication approximation,
we use a precursor film to relax the contact line singu-
larity. Unlike the constant flux case, the base flow of the
present situation depends on time. Consequently, we si-
multaneously solve the time evolution of the base flow
and perturbations by means of a finite difference numer-
ical code which uses an integral method developed here.
The main difficulty lies in the fact that the base state is
time-dependent, as it occurs in most of the flows found
in applications. The analysis presented here avoids the
use of simplified conditions, such as the imposition of a
constant fluid thickness in the bulk region -constant flux
(CF) flow-, and aims to give a more accurate description
of the instability in realistic flows.
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FIG. 1: Scheme of the inclined plane and coordinates axes.

One hindrance found when solving the linear equation
that governs the evolution of the perturbations is that
its coefficients depend on the flow velocity, v. Since v
depends on a third order derivative of the thickness h, the
requirement of high accuracy in the calculation implies
the use of a relatively small grid size, ∆x. Here, we
develop an integral method to calculate v which yields
a more accurate velocity profile in the front region than
the standard finite difference scheme for a given ∆x. One
of the merits of this method is its simplicity and ease of
adapting to other flow configurations.

For the CV flow, the perturbation travels with the
same velocity as the front and, after a short transient

period, it adopts an asymptotic final shape. Regarding
the amplitude of the perturbation, we find that our com-
putations reproduce the linear growth reported in the
experiments of Ref. [1].

The time evolution of both the power spectrum,
gm(λ, t), and the growth rate, σ(λ, t), shows some rel-
evant features of the dynamics of the perturbation. For
instance, the wavelength corresponding to the mode of
maximum amplitude, λmax, is time-dependent and de-
creases until an asymptotic value is reached, unlike the
CF flow where it remains fixed. Moreover, we show that
the instantaneous growth rate of λmax is not necessarily
largest at all times. This is possible since σ depends on
time, and then, the amplitude of each mode for the CV
flow is given by the time integral exp[

∫
σ(t)dt].
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FIG. 2: Comparison between the experimental power spec-
tra, I(t; λ), (dashed line) and the normalized numerical power
spectra, g∗

norm
(t; λ), (solid line).

When all modes have the same initial amplitude, λmax
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is in good agreement with the experimental data for the
films of silicon oil (PDMS) with capillary length a =
0.145 cm) on a vertical plane. In the typical case studied
here, we estimate λmax = 0.49 cm, which is reasonably
close to the experimental value, λexp

max
= 0.55 cm. The

difference between these wavelengths is due to the fact
that in experiments the initial amplitudes of the modes
are not necessarily equal to each other, as we set in the
simulations. The agreement between these wavelengths
is complete when experimental amplitudes at an early
time are used as inputs in the calculations (see Fig. 2).

The study of the dependence of the most unstable
wavelength, λmax, with the cross sectional area, A, con-
firms the power law dependence found in previous works
for inclination angle α = 90◦ [2, 3]. Moreover, here we
show that this dependence is still valid for α != 90◦, with
the same exponent. We also study the effect of α on λmax

(5◦ ≤ α ≤ 90◦), and conclude that a relationship of the
type

λmax ∝ A0.27/(sin α)0.247, (1)

holds for the range of A’s explored in this work, namely
(4 × 10−4, 2 × 10−3) cm2. This dependence confirms the
predictions in Ref. [3], but differs from those reported for
much larger areas [4–6]. In fact, the fluid areas used in
those experiments are ≈ 1 − 10 cm2, that is 103 − 104

times the cross sections considered in this work, so that
the capillary effects are small in those cases. As seen here,
as well as in the literature [7–9], surface tension yields to
the formation of a ridge in the front region, which is in
turn responsible for the instability. For relatively thick
films (i.e. for large Bond number B = (hc/a)2, where hc

is a characteristic thickness), the front region not only
shows this ridge, but also adopts the shape of a cater-
pillar [10, 11]. Then, the spreading proceeds mainly due
to the rolling motion at the head of the spreading and,
consequently, the dynamics is qualitatively different for
small and large B. Only when the average thickness be-
comes of the order of the capillary length, a, the shape of
the front region changes from caterpillar to wedge [11].
This explains why the scaling laws for λmax are different
for small and large Bond numbers. Therefore, the cases
studied here show that the spreading of small volumes
of fluids constitutes an example where the knowledge of
large scale physics cannot be directly applied to micro-
metrics flows.
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FIG. 3: Dependence of the most unstable mode, λmax, with
the cross section, A, for α = 45◦ (upper set of points) and
α = 90◦ (lower set of points).
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FIG. 4: Dependence of λmax on the inclination angle,
α, for A = 1.97 × 10−3 cm2 (upper set of points) and
A = 9 × 10−4 cm2 (lower set of points).
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