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Abstract

Film forming of a shear thinning fluid on a moving substratéigestigated the-
oretically and comparison made with existing experimedéda. The model is based
on lubrication theory for a power-law fluid resulting in a sétfour ordinary differ-
ential equations that are solved as a boundary value probReadictions of coating
gap to film thickness ratio and residual fluid fraction arefdto be in good agreement
with experimental data for Capillary numbers less than 1h agreement for Capillary
numbers less than 0.2 being particularly close.

1 Introduction

The process of forming a continuous thin liquid layer on a ingwsubstrate has a range of
applications, including coating where deposition of aoamf liquid film is required. Previ-
ous analyses for Newtonian fluids includes the work of LaAdewich [1], Bretherton [2],
Ruschaks empirical equation [3] and the Coyne & Elrod modEl The coating of a thin
liquid film is affected by different parameters as outlingdQ@uéré [5, 6], such as a range
of viscous, surface tension and inertial forces. This pépeuses on flow dominated by
surface tension and viscous forces, with inertial forcesrganegligible effects as is the
case of the Newtonian fluid forming investigations listedah

Coating fluids regularly exhibit non-Newtonian viscous #&ébur, leading to a require-
ment to be able to analyse such flows. Gutfinger & Tallmadgeahélysed the process
of withdrawing a shear thinning fluid fluid, obeying the povesw [8], from a large bath.
Weinstein & Ruschak [9], obtained a semi-empirical exgoesausing finite element data,
for the withdrawal of a substrate from a fluid filled gap. Thesulting expression:
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He = [K (n) RI71 [@e} ., K(n)=2553 065 (1)
has the same form as Gutfinger & Tallmadge’s with their gyagtépendent term replaced
by the empirical variabl& (n) (A, is the power law consistency factor, the power index
anda, surface tension).

Kamisli & Ryan [10] examined the film forming process for a maw fluid within a tube
when displaced by an air bubble forced along its length ahatemt speed. This geometry
is similar to that encountered in coating processes sucbllsoating and knife coating
when a moving surface is withdrawn from a fluid filled gap; thaimdifference, for low
capillary number flows, being the change of reference froat tfi a stationary interface
and moving substrate to a stationary substrate and moviagfane, as shown in figure 1,
which does not effect the validity of the analysis.

Kamisli & Ryan used a method of matched asymptotic expassionrmuch the same way
as that of Landau & Levich [2] and Bretherton [2], to developér and outer solutions,
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Figure 1: Comparison of coating flows and the gas penetratioblem.

incorporating a shear thinning fluid model. They concludezldpproach to be inadequate
for predicting the film thickness for a power law fluid and iatited this to the lack of
accuracy when determining the curvature of the bubble.

Here, the problem is revisited and the film formation of a shb@ning fluid obeying
a power law is investigated theoretically and compared with experimental results of
Kamisli & Ryan. The analysis results in a set of four diffdi@hequations, which are
solved as a boundary value problem (BVP).

2 Lubrication Analysis

Figure 2 defines the coordinate system employed; a locamyatigned with the free sur-
face is specified. The flow is assumed to be perpendicularetdréte surface rather than
the rigid surface sweeping the fluid from the gap. The metramtiuo solve the problem
involves a balance of viscous and pressure forces due togbestirface curvature. Making
the usual lubrication assumptions we arrive at:

oP ot

X~ aY’
whereT is the shear stress amithe local pressure. Assuming that the viscosity and/or
density of the gas phase is much less than the liquid phasétaadhe following equa-
tion describing the shear stress of a generalised Newtdhiah based on the boundary
condition thatt =0 aty = O:

)

dpP

For a shear thinning fluid which obeys the power law the shieessis defined as [11],
du |"*du
T=A ay @y 4
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Figure 2: Schematic of the film forming geometry analysechBVP for non-Newtonian
fluids obeying a power law

Equating the right hand sides of equations (3) and (4) gimason-dimensional form:

du
dy

"tdu dp

@ = &% (5)

the following non-dimensional scalings having been useauhout the analysis,
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From continuity of mass considerations the sign of the pmesgradient is positive, i.e.
whenh > 1 thenﬂ—‘x’ > 0. Asy < hthe equation describing the velocity gradient becomes:

1
du /dp \"
5 (5" ©

which can be integrated with respectytto obtain the velocity profile perpendicular to the
free surface. The velocity of the substrate gives the baynetendition,uy—n = cosd which

leads to: . )
dp,,\ " dpp)
(d—gy) ny — <d—f(’h) nh -
n+1 '
Integrating equation (7) frong = 0 toh and setting the dimensionless flug, equal to 1

leads to: N
dp _ /(2n+1)(hcosB—1)
dx - nhznir:rl '
Balancing the pressure discontinuity across the interfgitie the surface tension forces
gives:

u=cosf+

(8)

1 dé
=——— 9
whereCagr is the capillary number defined &agr = %ﬁ. The following geometric

relations also apply:
/

% = sing, (10)
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Figure 3: Predicted variation in free surface stagnatiantpeith power law index given by
equation (13)

and, /

dx

i cosH. (11)
The four first order ordinary differential equations (8)),(@0) and (11) describe the film
forming process. Equation (11) is not coupled to the otheetlso can be solved once the

solution to equations (8), (9) and (10) has been determined.

Substituting the pressure gradient equation, (8), intovilecity equation, (7) at the free
surfacey = 0, and after some rearranging, the location of the free seidéagnation point
is,

2n+1
h=—"—= 12
ncoso’ (12)
which leads to the film height’ at which the stagnation point is located,
W = 2”: ! (13)

This is in clear agreement with the location of the stagmagioint predicted by Coyne &
Elrod for Newtonian fluidsr{ = 1), where the stagnation point is locatedhat= 3. The
predicted free surface stagnation point is shown in figure 3.



2.1 Boundary Conditions

Four boundary conditions are required to close the problEmse are:

Pxseo =0, (14)

hX~>0° :l, (15)

X;:O =0, (16)
Tt

eX:O - — E (17)

Condition (17) can be replaced with_o = ¢, wherec is gap height, if the contact angle is
unspecified but the gap is known. This boundary conditionslaevbe applied in situations
where the meniscus is pinned as is often encountered in btztang.

2.2 Numerical Implementation

Equations (8), (9), (10) and (11) were solved using the BVIRes®BVP4c, part of the
MATLAB package?. In addition to the ODEs (8), (9), (10) and (11) the geometzia-
tionshiph = % was used to relate the solution of equation (10) to equaBdn Jsing
continuation (progressively decreasing the error) a stablculation method was obtained
for power indices greater than3) Each data point could be calculated in less than 3 min-
utes. Furthermore if an array of points is required the revisolution can be used as an
initial guess, greatly reducing computational time.

3 Reaults

A typical result is shown in figure 4, providing the pressuree surface velocity and free
surface profiles fon = 0.75 andCa = 0.005.

The results from the BVP, for the formation of a thin fluid filaxe now compared with ex-
perimental results obtained for the case of the semi-iefimitbble driven along a tube. For
this purpose comparisons are made with the complementggriexental data of Kamisli
& Ryan [10]. The capillary number used by Kamisli & Ryan enygd the tube radius as
the non-dimensionalising length scale as follows:

Ububble _ asr He ™ hl=Cagrc ™, (18)

= Cagr hx:O =

whereUpuppieis the bubble velocity (analogous to the substrate velagitiye BVP analysis)
andRis the tube’s internal diameter. While the capillary numisdsased on the final film
thickness in the BVP analysis, the capillary number due tmish & Ryan Caxgr) is
independent of the final film thickness making it easier to para with experimental data
by allowing a comparison of film thickness forming on the desof the tube rather than a
comparison of the tube diameter for a given film thickness.

Agreement with the experimental results of Kamisli & Ryanvésy good, see figures 5
and 6, with the effect of decreasing power index leading teduction in the final film
thickness (or deposited fluid) for capillary numbers leemtR55. Agreement is best at
lower capillary numberfJaxer < 0.2). It should be noted that while the theoretical results
of Kamisli & Ryan appear to agree with their experimentabdat low capillary numbers
they show completely the opposite trend in predicting anciase in residual fluid fraction
for increasingly shear thinning fluids (decreasm)dor a given capillary number.

1A computational mathematics program from MathWorks.
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Figure 4: Typical solution for a thin film forming shear thing fluid, Ca= 0.005n=0.75.
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Figure 5: A comparison of prediction with Kamisli & Ryan’s(Jltube radius to film thick-
ness ratio for a Newtoniam & 1) and shear thinningn(= 0.652) fluids.
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Figure 6: A comparison of prediction with Kamisli & Ryan'sJJlresidual fluid fraction for
a Newtonian 1§ = 1) and shear thinningh(= 0.652) fluid.

4 Conclusion

The agreement between the BVP formulated here and the mgratdl data obtained by
Kamisli & Ryan in the course of their investigations is goat grovides confidence in
relation to applying the model for the solution of a variefypooblems involving shear
thinning fluids, including many lubrication and coating flewThe conservative limit of
Caksr < 0.2 to which the BVP solution is applicable has been introduiteth a com-
parison with the experimental data. This work also iderstiffee need for additional good
guality complementary experimental data to be collecteddmnparison purposes.

References

[1] L. Landau and B. Levich. Dragging of a liquid by a movingd. ACTA Physicochim-
ica URSS 17:42, 1942.

[2] F.P. Bretherton. The motion of long bubbles in tubdsurnal of Fluid Mechanics,
10:166, 1961.

[3] K.J. Ruschak. Boundary-conditions at a liquid air iféee in lubrication flowsJour-
nal of Fluid Mechanics, 119(JUN):107-120, 1982.

[4] J.C. Coyne and H.G. Elrod. Conditions for the rupture dfilaricating film. part 1:
Theoretical modelJournal of Lubrication Technology, 92:451, 1970.

[5] D. Quere. Fluid coating on a fibeAnnual Review of Fluid Mechanics, 31:347-384,
1999.

[6] D. Quere. Fluid coating. lfturopean Coating Symposium, pages 11-32, Strasbourg,
1999.



[7] C. Gutfinger and J. A. Tallmadge. Films of non-Newtoniamd$ adhering to flat
plates.Aiche Journal, 11:403—-413, 1965.

[8] J. G. Oldroyd. On the formulation of rheological equasoof state. Proceed-

ings of the Royal Society of London Series a- Mathematical and Physical Sciences,
200(1063):523-541, 1950.

[9] S. J. Weinstein and K. J. Ruschak. Coating rofmsnual Review of Fluid Mechanics,
36:29-53, 2004.

[10] F. Kamisli and M. E. Ryan. Perturbation method in gasisied power-law fluid dis-

placement in a circular tube and a rectangular chai@tedmical Engineering Journal,
75(3):167-176, 1999.

[11] R. B. Bird, R. C. Armstrong, and O. Hassag€&ynamics of Polymeric Liquids, vol-
ume 1. Wiley, New York, 2 edition, 1987.





