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Abstract

Film forming of a shear thinning fluid on a moving substrate isinvestigated the-
oretically and comparison made with existing experimentaldata. The model is based
on lubrication theory for a power-law fluid resulting in a setof four ordinary differ-
ential equations that are solved as a boundary value problem. Predictions of coating
gap to film thickness ratio and residual fluid fraction are found to be in good agreement
with experimental data for Capillary numbers less than 1, with agreement for Capillary
numbers less than 0.2 being particularly close.

1 Introduction

The process of forming a continuous thin liquid layer on a moving substrate has a range of
applications, including coating where deposition of a uniform liquid film is required. Previ-
ous analyses for Newtonian fluids includes the work of Landau-Levich [1], Bretherton [2],
Ruschaks empirical equation [3] and the Coyne & Elrod model [4]. The coating of a thin
liquid film is affected by different parameters as outlined by Quéré [5, 6], such as a range
of viscous, surface tension and inertial forces. This paperfocuses on flow dominated by
surface tension and viscous forces, with inertial forces having negligible effects as is the
case of the Newtonian fluid forming investigations listed above.

Coating fluids regularly exhibit non-Newtonian viscous behaviour, leading to a require-
ment to be able to analyse such flows. Gutfinger & Tallmadge [7]analysed the process
of withdrawing a shear thinning fluid fluid, obeying the powerlaw [8], from a large bath.
Weinstein & Ruschak [9], obtained a semi-empirical expression, using finite element data,
for the withdrawal of a substrate from a fluid filled gap. Theirresulting expression:

H∞ = [K (n)R]
3

2n+1

[
λUsubstrate

σ

] 2
2n+1

, K (n) = 2.553e−0.65n , (1)

has the same form as Gutfinger & Tallmadge’s with their gravity dependent term replaced
by the empirical variableK (n) (λ, is the power law consistency factor,n, the power index
andσ, surface tension).

Kamisli & Ryan [10] examined the film forming process for a power law fluid within a tube
when displaced by an air bubble forced along its length at a constant speed. This geometry
is similar to that encountered in coating processes such as roll coating and knife coating
when a moving surface is withdrawn from a fluid filled gap; the main difference, for low
capillary number flows, being the change of reference from that of a stationary interface
and moving substrate to a stationary substrate and moving interface, as shown in figure 1,
which does not effect the validity of the analysis.

Kamisli & Ryan used a method of matched asymptotic expansions, in much the same way
as that of Landau & Levich [2] and Bretherton [2], to develop inner and outer solutions,
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Figure 1: Comparison of coating flows and the gas penetrationproblem.

incorporating a shear thinning fluid model. They concluded the approach to be inadequate
for predicting the film thickness for a power law fluid and attributed this to the lack of
accuracy when determining the curvature of the bubble.

Here, the problem is revisited and the film formation of a shear thinning fluid obeying
a power law is investigated theoretically and compared withthe experimental results of
Kamisli & Ryan. The analysis results in a set of four differential equations, which are
solved as a boundary value problem (BVP).

2 Lubrication Analysis

Figure 2 defines the coordinate system employed; a local system aligned with the free sur-
face is specified. The flow is assumed to be perpendicular to the free surface rather than
the rigid surface sweeping the fluid from the gap. The method used to solve the problem
involves a balance of viscous and pressure forces due to the free surface curvature. Making
the usual lubrication assumptions we arrive at:

∂P
∂X

=
∂τ
∂Y

, (2)

whereτ is the shear stress andP the local pressure. Assuming that the viscosity and/or
density of the gas phase is much less than the liquid phase we obtain the following equa-
tion describing the shear stress of a generalised Newtonianfluid, based on the boundary
condition thatτ = 0 aty = 0:

τ =
dP
dX

Y. (3)

For a shear thinning fluid which obeys the power law the shear stress is defined as [11],
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∣
∣
∣
∣
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. (4)
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Figure 2: Schematic of the film forming geometry analysed in the BVP for non-Newtonian
fluids obeying a power law

Equating the right hand sides of equations (3) and (4) gives,in non-dimensional form:

∣
∣
∣
∣
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∣

n−1 du
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=
d p
dx

y, (5)

the following non-dimensional scalings having been used throughout the analysis,

u =
U

Usubstrate
,

(
x,y,h,h′

)
=

(X ,Y,H,H ′)

H∞
and p =

PHn
∞

λUn
substrate

.

From continuity of mass considerations the sign of the pressure gradient is positive, i.e.
whenh ≥ 1 thendp

dx ≥ 0. Asy ≤ h the equation describing the velocity gradient becomes:

du
dy

=

(
d p
dx

y

) 1
n

, (6)

which can be integrated with respect toy to obtain the velocity profile perpendicular to the
free surface. The velocity of the substrate gives the boundary condition,uy=h = cosθ which
leads to:

u = cosθ+

(
dp
dx y

) 1
n

ny−
(

dp
dx h

) 1
n

nh

n+1
. (7)

Integrating equation (7) fromy = 0 to h and setting the dimensionless flux,q, equal to 1
leads to:

d p
dx

=

(
(2n+1) (hcosθ−1)

nh
2n+1

n

)n

. (8)

Balancing the pressure discontinuity across the interfacewith the surface tension forces
gives:

p = −
1

CaST

dθ
dx

, (9)

whereCaST is the capillary number defined asCaST =
λUn

substrate
σHn−1

∞
. The following geometric

relations also apply:
dh′

dx
= sinθ, (10)
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Figure 3: Predicted variation in free surface stagnation point with power law index given by
equation (13)

and,
dx′

dx
= cosθ. (11)

The four first order ordinary differential equations (8), (9), (10) and (11) describe the film
forming process. Equation (11) is not coupled to the other three so can be solved once the
solution to equations (8), (9) and (10) has been determined.

Substituting the pressure gradient equation, (8), into thevelocity equation, (7) at the free
surface,y = 0, and after some rearranging, the location of the free surface stagnation point
is,

h =
2n+1
ncosθ

, (12)

which leads to the film heighth′ at which the stagnation point is located,

h′ =
2n+1

n
. (13)

This is in clear agreement with the location of the stagnation point predicted by Coyne &
Elrod for Newtonian fluids (n = 1), where the stagnation point is located ath′ = 3. The
predicted free surface stagnation point is shown in figure 3.
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2.1 Boundary Conditions

Four boundary conditions are required to close the problem.These are:

px→∞ =0, (14)

hx→∞ =1, (15)

x′x=0 =0, (16)

θx=0 =−
π
2
. (17)

Condition (17) can be replaced withhx=0 = c, wherec is gap height, if the contact angle is
unspecified but the gap is known. This boundary conditions would be applied in situations
where the meniscus is pinned as is often encountered in bladecoating.

2.2 Numerical Implementation

Equations (8), (9), (10) and (11) were solved using the BVP solver BVP4c, part of the
MATLAB package1. In addition to the ODEs (8), (9), (10) and (11) the geometricrela-
tionship h = h′

cosθ was used to relate the solution of equation (10) to equation (8). Using
continuation (progressively decreasing the error) a stable calculation method was obtained
for power indices greater than 0.5. Each data point could be calculated in less than 3 min-
utes. Furthermore if an array of points is required the previous solution can be used as an
initial guess, greatly reducing computational time.

3 Results

A typical result is shown in figure 4, providing the pressure,free surface velocity and free
surface profiles forn = 0.75 andCa = 0.005.

The results from the BVP, for the formation of a thin fluid film,are now compared with ex-
perimental results obtained for the case of the semi-infinite bubble driven along a tube. For
this purpose comparisons are made with the complementary experimental data of Kamisli
& Ryan [10]. The capillary number used by Kamisli & Ryan employed the tube radius as
the non-dimensionalising length scale as follows:

CaK&R = λ
Un

bubble

σRn−1 ≡CaST
H∞

R

n−1

≡CaST hn−1
x=0 ≡CaST c1−n, (18)

whereUbubbleis the bubble velocity (analogous to the substrate velocityin the BVP analysis)
andR is the tube’s internal diameter. While the capillary numberis based on the final film
thickness in the BVP analysis, the capillary number due to Kamisli & Ryan (CaK&R) is
independent of the final film thickness making it easier to compare with experimental data
by allowing a comparison of film thickness forming on the inside of the tube rather than a
comparison of the tube diameter for a given film thickness.

Agreement with the experimental results of Kamisli & Ryan isvery good, see figures 5
and 6, with the effect of decreasing power index leading to a reduction in the final film
thickness (or deposited fluid) for capillary numbers less than 0.55. Agreement is best at
lower capillary numbers (CaK&R < 0.2). It should be noted that while the theoretical results
of Kamisli & Ryan appear to agree with their experimental data for low capillary numbers
they show completely the opposite trend in predicting an increase in residual fluid fraction
for increasingly shear thinning fluids (decreasingn) for a given capillary number.

1A computational mathematics program from MathWorks.
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Figure 4: Typical solution for a thin film forming shear thinning fluid,Ca = 0.005,n = 0.75.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Ca
K&R

G
ap

 to
 fi

lm
 th

ic
kn

es
s 

ra
tio

 h
x=

0

BVP, n = 1
BVP, n = 0.652
Exp, n = 1
Exp, n = 0.652

Figure 5: A comparison of prediction with Kamisli & Ryan’s [10] tube radius to film thick-
ness ratio for a Newtonian (n = 1) and shear thinning (n = 0.652) fluids.
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Figure 6: A comparison of prediction with Kamisli & Ryan’s [10] residual fluid fraction for
a Newtonian (n = 1) and shear thinning (n = 0.652) fluid.

4 Conclusion

The agreement between the BVP formulated here and the experimental data obtained by
Kamisli & Ryan in the course of their investigations is good and provides confidence in
relation to applying the model for the solution of a variety of problems involving shear
thinning fluids, including many lubrication and coating flows. The conservative limit of
CaK&R < 0.2 to which the BVP solution is applicable has been introducedfrom a com-
parison with the experimental data. This work also identifies the need for additional good
quality complementary experimental data to be collected for comparison purposes.
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