Disintegration of liquid films
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The rupture of a thin liquid film is considered in the framework of an earlier devel-
oped mathematical theory of flows with forming/disappearing interfaces. The process
is shown to be driven by the surface-tension gradient arising when the rate of variation
of the free-surface area due to external disturbances becomes comparable with the inverse
surface-tension relaxation time. The proposed mathematical description of the rupture
phenomenon does not require the introduction of intermolecular forces into the equations
of macroscopic fluid mechanics. The theory allows one to predict the minimal critical
thickness of the film that remains stable with respect to given external disturbances.

1 Introduction

In order to handle coating films efficiently, one faces a problem of finding a balance between
the requirement for these films to be thin, as dictated by the desired properties of the final
product, and the tendency of thin films to rupture thus creating defects in the coating.
This technological dilemma can be addressed by considering the underlying problem of
theoretical fluid mechanics, namely the problem of the mathematical modelling of fluid
motion with transitions in the topology of the flow domain. This problem defines a wide
class of flows which include, in addition to the rupture of films, also the breakup of liquid
jets, coalescence of drops, nucleation of bubbles and many others. The peculiarity of
the film rupture problem is that, unlike the breakup of jets where the capillary pressure
magnifies the long-wave disturbances, in the case of films the capillary pressure is always
a stabilising factor (though a weak one). Hence in the standard fluid mechanical model
there appears to be no mechanism that could disintegrate liquid films.

In order to remedy the situation, in a number of works the Navier-Stokes equations de-
scribing fluid motion on a macroscopic length scale are artificially ‘augmented’ with in-
termolecular forces. However, this ‘addition’ is a fundamental mistake contradicting the
continuum limit and the concept of ‘stress’ that accounts for momentum fluxes due to in-
termolecular forces and molecular motion. Since this mistake made its way into a number
of papers, it is worth recapitulating a few basic ideas lying at the foundation of continuum
mechanics.

Let us consider the momentum flux across a control surface drawn through the bulk of
the fluid. Physically, this flux includes two components: (a) the momentum flux due to
intermolecular forces exerted by the molecules located on one side of the control surface
on the molecules on the other side and (b) the momentum flux due to molecular motion
across the control surface (Fig. la,b). The first contribution is dominant in solids, the
second one plays the main role in gases, whereas for liquids both factors are comparable.
In the continuum limit, the momentum flux across a surface is described by the concept
of ‘stress’; i.e. a distributed force acting on this surface (Fig. 1c). In other words, the
continuum mechanics approximation collapses the layer with the thickness on the scale of
the range of intermolecular forces (or, if it is greater, the molecular free run) comprising
the control surface into this surface and accounts for both contributions to the momentum
flux across it in the notion of stress'.

Thus, one has that, in the continuum limit, all molecular length scales, including the

'This notion is a conceptual leap from molecular dynamics. In molecular dynamics, one has masses of
molecules, their velocities and forces acting between them, whereas in continuum mechanics we deal with
densities, velocities, body forces and internal stresses, i.e. the surface forces.



Figure 1: In the continuum limit, the momentum fluxes due to intermolecular forces acting
across a surface (a) and due to molecular motion (b) are accumulated in the concept of
‘stress’, which is a distributed force acting on a mathematical surface (c).

range of intermolelar forces, vanish. Strictly speaking, the continuum limit is defined
as the Oth-order approximation in the ratio of molecular-to-macroscopic length and time
scales as this ratio goes to zero. Then, all length and time scales featuring in the continuum
mechanics models are, by definition, macroscopic, not molecular. Therefore an explicit
inclusion of intermolecular forces — and hence molecular lengths! — in a continuum
model is incompatible with the very fundamentals of continuum mechanics as a scientific
discipline?. It is also necessary to emphasize that all intermolecular forces have already
been accounted for by the concept of stress so that their inclusion in addition to the stress
would mean double-counting of the same physical effects.

In the present work, a macroscopic mechanism of rupture of liquid films is analysed in the
framework of the thin-film approximation. The main physical idea behind this mechanism
is as follows. As can be shown, the rate at which the free surface area is created by external
disturbances increases (in the limit, to infinity) as the film gets thinner. This means that,
for sufficiently thin films, this rate will become comparable with the rate at which the
free surface acquires its surface properties (such as the surface tension). Then an external
disturbance of a thin film will drive the surface tension out of equilibrium and, due to the
spatial nonuniformity of the process, create a surface tension gradient pulling the film apart
via the Marangoni effect. Then, the film ruptures if it is thin enough for the Marangoni
stresses to break it before the relaxation mechanisms, which drive the free surface back
to its equilibrium state, eliminate these stresses. Otherwise, the surface tension relaxes to
its equilibrium value and the capillary pressure, becoming the only driving force, restores
the initial shape of the free surface. As a result, the magnitude and rate of the external
disturbances correlate with the maximum thickness of the film that can be ruptured by
these disturbances. This situation is qualitatively different from the case of a cylindrical
thread, which is linearly unstable to long-wave disturbances.

In the present work, we illustrate the above mechanism of rupture by considering the
case of a free film. The same physical mechanisms operate when a film is on a solid
substrate though mathematically this case is considerably different and will be discussed
elsewhere. Since the film rupture problem is essentially a particular case of the interface
formation/disappearance phenomenon, for its mathematical modelling we can use the
simplest theory of flows with forming/disappearing interfaces [1], which has originally
been developed for, and shown to be successful in, describing dynamic wetting [1-3]. In
the present work, the model is used without any adhoc alterations.

2]t is also worth mentioning that, in continuum mechanics, once the concept of stress is introduced, the
interfacial layers, whose thickness is determined by the range of intermolecular forces, have to be modelled
as mathematical surfaces, not as layers of a finite thickness.



2 Thin-film approximation

To study a free-surface flow with a topological transition of the flow domain in the frame-
work of the theory of fluid motion with forming interfaces [1] one has to consider solutions
of the Navier-Stokes equations,

V.u=0, p(0u/dt+u-Vu)=-Vp+ puViu, (1)

satisfying at an a priori unknown free surface f(r,t#) = 0 with the inward normal n =
V f/|V f| the boundary conditions
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together with some conditions in the far field specifying a particular flow and initial con-
ditions. In addition to the known kinematic condition (2) and conditions on the normal
and tangential stress (3), where I is the metric tensor, the model accounts for the mass
exchange between the bulk and the surface phase (4) as the interface relaxes towards its
equilibrium state with the surface density p* tending to its equilibrium value p? (7 is the
relaxation time; u and v*® are the bulk and the surface-phase velocity, respectively). For
spatially nonuniform flows, like the rupture of a film, the appearing gradient of the sur-
face tension o, first, influences the flow via the tangential-stress condition (the Marangoni
effect; the second condition in (3)) and, secondly, forming a torque with the tangential
stress, it makes the tangential to the interface components of the surface velocity v* de-
viate from the corresponding component of the bulk velocity u evaluated at the interface
(the first condition in (5)). The equation of state in the surface phase (the second equa-
tion in (5)) is taken in a simple barotropic form approximating the general equation of
state for the surface phase, o = f(p®,T), where T is the absolute temperature, for the
process of interface formation. Equation (5) takes into account that the surface tension
decreases from its equilibrium value o, = o(p?) if the surface phase becomes compressed or
extremely rarefied. In particular, a hypothetical instantly created free surface corresponds
to p* = 0 and, as one would expect, has zero surface tension; the latter is acquired as
the molecular motion leads to the formation of a certain structure of the interfacial layer,
which is macroscopically modelled as a two-dimensional ‘surface phase’. Estimates for ma-
terial constants o, 8 and 7 for some fluids have been obtained by analysing experiments
on dynamic wetting [3].

The general three-dimensional problem can be considerably simplified in the thin-film
approximation with the ratio of characteristic length scales in the directions normal and
tangential to the film € as a small parameter. We will consider this approximation for
a plane two-dimensional flow in a film of incompressible Newtonian fluid of viscosity u
and density p surrounded by an inviscid dynamically-passive gas. Let the film’s shape be
described by y = +h(z,t) in a suitably chosen Cartesian coordinate frame and u, u*, v, v*
denote, respectively, the z and y components of the bulk and surface velocities. Then the
thin-film approximation can be obtained by using the following asymptotic expansions:
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asymptotic analysis to leading order one arrives at the following set of equations:
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where 8 = Bup~lo™ (1 4+ 4aB)7t, ¥ = ap(bpo.7)™" and pS = psha~!. In obtaining (7)-
(10) it was assumed that all nondimensional parameters appearing after the use of scaling
(6) are of O(1) as € — 0. In particular, this means that €t,77' — 0 as ¢ — 0 so that,
physically, the process described by (7)—(10) takes place on a time scale small compared
with 7 and, according to the second equation (8), the relaxation mechanisms have no time
to restore the equilibrium surface density (and hence the equilibrium surface tension).

Equations (7)—(10) can be simplified further for medium to high-viscosity fluids by using
the estimates for material constants of the model obtained from experiments on dynamic
wetting [3]. These estimates show that for such fluids ¥ < 1 and 3 > 1 and hence, to
leading order in these parameters, it follows from (9) that one can neglect the difference
between (uf,vg) and (uog,vo). Then, after simple algebra we arrive at an initial-value
problem for the following set of nonlinear equations:
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(Hereafter for brevity we drop the overbar and the subscript 0.) In (11), the surface tension
gradient on the right-hand side appears as the only driving force, unlike the case of the

breakup of a cylindrical jet [4], where the Marangoni effect and the capillary pressure due
to the cross-sectional curvature play comparable roles.

(11)

3 The process of rupture

As already mentioned, the scaling (6) implies, in particular, that equations (11), (12)
operate on a time scale small compared with the surface-tension-relaxation time, and,
with no relaxation in (12), u = 4 = const, h = h = const, p* = p* = const is a solution
of (11), (12) for arbitrary values of i, h and p*. A linear stability analysis of this solution
leads to a dispersion relationship of the form
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and w and k are the angular frequency and wavenumber, respectively. Hence the solution
is stable for A < 0, which for the surface equation of state given by the second equation
(12) corresponds to p* > a/(2b) and unstable otherwise. In other words, it is stable if
the rarefaction of the surface phase increases the surface tension, which then contracts
the surface and replenishes p°. On the other hand, if the surface tension decreases with
decrease in p®, then a local rarefaction of the surface phase due to an external disturbance
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Figure 2: Profiles of the free surface at different moments in time. Solid lines 1-9 are
obtained for ¢+ = 0, 10, 15, 20, 25, 30, 35, 40 and 45, respectively. Dashed lines a—d
correspond to t = 41, 42, 43 and 44.

leads to a local reduction in the surface tension whose gradient then acts to pull the film
apart and reduce p*® even further. The dispersion relationship (13) also indicates that,
unlike Rayleigh’s instability of a cylindrical jet, the most destabilizing are short-wave
disturbances.

In order to illustrate how the Marangoni effect incorporated in (11)—(12) leads to the
rupture of a free film in the nonlinear regime consider the evolution of the film that after
an external finite-amplitude disturbance makes p® = p°, where p°® is in the unstable zone
(A > 0). It is instructive to look at the borderline case where A =0, i.e. p* = a/(2b).

Let us consider a small disturbance p® = a/(2b)[1 — Aexp(—22/1%)], where A is the relative
amplitude and [ is the width of the disturbance.

Fig. 2 shows the film’s profile at various times obtained via numerical integration of (11)
and (12) for A = 0.1 and [ = 0.5. As one can see, the initial disturbance of the surface
tension indeed leads to the film’s thinning due to the Marangoni effect. In the thin-film
approximation p = —20u/0x and, as t increases, the pressure in the minimal cross-section
goes through a global minimum (Fig. 3) suggesting a transition to a new dynamic regime.
The essence of this regime follows from Fig. 2, which shows a gradual formation of a distinct
structure consisting of a departing main body of fluid (macrofilm) and a vanishing residual
film of an increasingly uniform thickness. Given that the (almost constant) thickness of
the macrofilm and the (infinitesimal) thickness of the residual film are separated in scale,
the late stage of the evolution of the residual film must take place in a self-similar regime.
This regime is given by
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where tg, H and R are constants determined by the preceding evolution of the film. In this
solution, both terms on the right-hand side of (11) become separately zero thus indicating
that the process is driven by the departing ends of the macroscopic film whereas the
residual film simply follows and gets thinner accordingly. Thus, there is no effect of the
residual film on the departing ends of the macrofilm and hence of these ends on each other.
In effect, this is what ‘rupture’ means in dynamic terms.

Since the thinning of the residual film does not lead to singularities in the solution, in
practice, as one computes the global flow numerically, the residual film can be neglected
once its thickness becomes smaller than the spatial resolution of the code.

It is noteworthy that, physically, the microscopic evolution of the film that follows after
the opposite interfacial layers ‘touch’ is a natural continuation of the mechanism described
above. Indeed, ‘touching’ of the opposite interfaces means that each of them is no longer
separating two bulk phases, and it is this position between the bulk phases (associated
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Figure 3: The pressure in the minimal cross-section vs time for [ = 0.5 (curve 1) and
1 =10.7 (curve 2).

with asymmetry of intermolecular forces acting on the interfacial layer) that gives rise to
the surface tension. Hence, ‘touching’ interfaces lose their surface tensions at the point
of contact and, given that in the remaining parts of the film the surface tension is still
nonzero, the film is pulled apart by the surface-tension gradient. This final ‘microscopic
rupture’ is physically the same as the macroscopic process described in the present paper.

References

1. Shikhmurzaev, Y. D., 1993 The moving contact line on a smooth solid surface, Intl .J.
Multiphase Flow 19, 589-610.

2. Shikhmurzaev, Y. D., 1997 Spreading of drops on solid surfaces in a quasi-static regime,
Phys. Fluids 9, 266-275.

3. Blake, T. D. & Shikhmurzaev, Y. D., 2002 Dynamic wetting by liquids of different
viscosity, J. Colloid & Interf. Sci. 253, 196—-202.

4. Shikhmurzaev, Y. D., 2005 Capillary breakup of liquid threads: A singularity-free
solution, IMA J. Appl. Maths (accepted, published online on March 16, 2005).





