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We study the flow of a viscous liquid down an inclined channel with a sinusoidal bottom profile of 
moderate steepness. In experiment, we observed standing waves in resonance with the bottom contour. At 
the rising edge of the resonance curves, we found humps that are mainly due to second and third 
harmonics of the bottom undulation. We now propose an analytical approach for these standing waves 
and humps. Our approach recovers the qualitative features of the experimental observations. 
 
1 Introduction 
In many industrial and environmental systems, films of viscous liquid flow along substrates that 
are usually curved or undulated. Here we focus on gravity-driven films. For monotonously 
falling bottom contours, the local steady flow of thin gravity-driven films at low Reynolds 
numbers corresponds essentially to that over a flat incline at the corresponding local inclination 
angle [1]. At Reynolds numbers of order one, surface waves are generated [1]. But inertia also 
affects the basic flow: In regimes where inertia becomes significant, hydraulic jumps are 
generated at the inflow into the flat region of the undulated bottom [2] and for periodic bottom 
contours even of weak steepness resonant standing waves have been observed [2], [3]. 

Bontozoglou and co-workers have studied the resonance of viscous film flow down periodic 
corrugations with capillary-gravity waves. For small amplitudes of the bottom corrugation and 
rather thick films they found numerically a resonance of the free surface with the bottom 
contour [4]. At higher steepness, Bontozoglou calculated a skewed, bistable resonance with 
increasing steepness [5]. While Bontozoglou and co-workers focused on resonance in rather 
thick films in the capillary and capillary-gravity regime, we found experimentally a resonance in 
rather thin films in the gravity-wave regime [2]. In this case the film thickness was about the 
same as the amplitude of the bottom undulation. At the rising edge of the resonance curve we 
observed humps that form at the flat side of the undulation.  

Here, we present an analytical approach to account for the qualitative features of the standing 
waves as encountered in experiment. For the derivation of a non-linear equation for the film 
thickness, we employ the Kármán-Polhausen integral boundary-layer method in local 
coordinates. In this method the velocity profile has to be known a priori. Assuming a self-
similar parabolic velocity profile, the equation is solved in Cartesian coordinates in a 
perturbation analysis for the steepness of the bottom contour. In the following section, we 
derive the equation for the film thickness. It is solved in Section 3 and discussed in Section 4. 
We finally summarize our conclusions in Section 5. 
 
2 Analytical description of the standing waves 
We study the two dimensional film flow of an incompressible Newtonian liquid down a 
sinusoidal bottom ˆ ˆ( ) sin(2 )b x a xπ λ= , with wavelength λ, amplitude a, and x̂  being the 
Cartesian coordinate in main flow direction, which is inclined at an angle α with respect to the 
horizontal, as shown in Figure 1. Considering the wavelength of the bottom variation being 
much larger than the film thickness, we use an orthogonal curvilinear coordinate system with x 
being the arc length along the bottom contour and z pointing upwards into the liquid 
perpendicular to the bottom. This local coordinate system is unambiguous, since the coordinate 
axes do not cross within the liquid film. The local coordinate system is also shown in Figure 1. 
The inclination angle due to the bottom profile is ˆarctan ( )b xθ ′=  and the local curvature κ is 
defined by 



 
 
 

Figure 1: Film flowing down an 
undulated bottom profile with wavelength 
λ and mean inclination angle α. The 

Cartesian coordinates x̂  and ẑ  point in 
mean flow direction and perpendicular to 
it. The local coordinates x and z are taken 
in tangential and perpendicular direction 

of the profile, respectively. 
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where b′  denotes the differentiation with respect to the corresponding Cartesian coordinate x̂ . 
The elemental lengths in x and z direction are ( )1 z dxκ+  and dz , respectively.  

A detailed derivation of the set of equations in local coordinates has been given in [1]. Denoting 
the local position of the free surface, the bottom contour, time, pressure, and the velocity 
components parallel and perpendicular to the bottom by f, b, t, p, u, and w, respectively, we 
apply the following ‘natural’ scaling  
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where the capital letters refer to the dimensionless quantities and ρ, h, and u  are the density, 
the film thickness and the mean flow velocity, respectively. The film thickness and the mean 
flow velocity are taken for the corresponding film flow down a flat plane at inclination angle α 
at the given flow rate, thus  
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where q , g, and ν are the flow rate, acceleration of gravity, and the kinematic viscosity, 
respectively. 

Applying this scaling and introducing the Reynolds number as /Re u h ν= , the Navier-Stokes 
equations read  
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where we introduced the dimensionless film thickness 2 hδ π λ= , and the amplitude to film 
thickness ratio a hξ = . The continuity equation for incompressible fluids takes the following 
form: 
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In integral form mass conservation yields the dimensionless flow rate 
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Due to the local coordinate system the boundary conditions at the bottom are: 
0U W= = . (8) 

At the free surface the kinematic boundary condition reads 
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The dynamic boundary condition normal to the surface is now 
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where 21 (2 ) sinCaBo lπ λ α=  is an inverse Bond number with ( )Cal gσ ρ=  and σ being the 

Capillary length and the surface tension, respectively. Finally, the dynamic boundary condition 
tangential to the free surface reads 
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The Kármán-Polhausen integral boundary-layer method has been applied with success to film 
flow at high Reynolds numbers [6]. Here we use this method to obtain a single equation for the 
resonance of capillary-gravity waves with the bottom corrugation. Integrating the continuity 
equation (6) over the film thickness and taking into account (7), (8), and the kinematic boundary 
condition (9) yields  
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Integrating the momentum equation in Z direction (5) from a position Z in the liquid up to the 
free surface and inserting the dynamic boundary condition normal to the free surface (10) yields 
for the pressure 
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where we made use of the continuity equation (6). Inserting the pressure from (13) into the 
momentum equation in X direction (4) and integrating it now over the film thickness, using 
integration by parts in the Reynolds term, the no-slip condition at the bottom (8), and the 
kinematic boundary condition at the free surface (9) and further eliminating W Z∂ ∂ by 
applying the continuity equation (6), finally, results in 
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This equation is still exact. Together with (12), it forms a set of two coupled equations. In the 
experiments described in [2], the resonance was observed where the film thickness is of same 
order as the amplitude of the bottom corrugation, i.e. 1ξ ≈ . The film-thickness parameter δ was 
small although not much smaller than unity. In the experiments mentioned above, δ was about 
0.3, and thus δ2 is sufficiently smaller than one to serve as a perturbation parameter. Hence, 
expanding the terms ( )21 1

n
Zδ ξ+ Κ  in (12) and (14) in a Taylor series with 2 1δ  and using 

the no-slip condition at the bottom (8) yields 
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This equation retains the different physical effects such as gravity, viscous stresses, inertia, 
hydrostatic and capillary pressure at leading order in the perturbation parameter δ2. The 
equation can be recasted into first order by renormalization, i.e. the leading-order terms for each 
physical effect can all be of comparable order. The term for the gravity forcing 3Fsin(α–Θ)/sinα 
and the wall shear stress are of order one. With the Reynolds number being of the order 1/δ or 
higher, the leading-order inertia terms are of the same order as the gravity forcing. The same 
holds for the leading-order term of the hydrostatic pressure term with cos(α–Θ)/sinα at small 
inclination angles and for the capillary-pressure term with large inverse Bond numbers.  

Besides the wall shear stress, we also retained for the viscous stresses the viscous forces at the 
free surface, although they are of order δ2. Since higher harmonics of the bottom wavelength 
may occur in resonant interaction, this would diminish their scale in X direction. Retaining 
higher order derivatives to describe dynamics on a shorter scale than that given by the 
geometrical quantities of the system is also used in other gravity-driven film flow phenomena 
[6]. In the following we hence retain the higher order derivatives in the viscous forces while 
neglecting curvature terms of order δ2, yet the scale of the bottom curvature is independent from 
the dynamics. However, as we will see later, it turns out that these terms are not of qualitative 
relevance for the solution. 

A specific profile must now be imposed in the theory. The stationary film flow down a flat 
plane has a parabolic velocity profile and even in the presence of surface waves the flow is well 
described by a self-similar parabolic velocity profile [7]. Furthermore, thin films down wavy 
planes also have a self-similar parabolic velocity profile at leading order when the Reynolds 
numbers is of order one [1]. Therefore, we may assume here a self-similar parabolic velocity 
profile, which reads  
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Since we focus on resonance with standing waves, we assume a stationary flow with the 
dimensionless flow rate equal to one. By doing so, we finally arrive at an equation for a driven 
oscillator, however, with nonlinear coefficients 
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The oscillation is due to the viscous terms at the free surface and the wall shear stress, i.e. the 
upper line of (17). Damping is due to the first two terms in the second line, i.e. hydrostatic and 
capillary pressure. The third derivative in the capillary term leads to strong damping at short 
wavelengths while the hydrostatic pressure damps at larger wavelengths. These two terms are 
responsible for the capillary-gravity waves. The damping is counteracted by inertia. Resonance 
is expected where inertia becomes just equal to the damping. The oscillation is driven by the 
effects in the third line. They are nonlinear functions of the film thickness itself. The first term 
in the third line is the gravity-driven forcing by the change in the local inclination angle. The 
second and third ones are due to the change of the hydrostatic and capillary pressures, 
respectively, that are caused by the undulated bottom. 
 
3 Analytical solution 
To solve (17), we transform the equation into Cartesian coordinates and expanding it into a 
power series of the bottom steepness ζ =2πa/λ. Taking into account that ( )arctan Bζ ′Θ =  and 
that the X-coordinate along the bottom is the arc length 
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we arrive at  
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where we inserted the sinusoidal bottom profile and rearranged the terms according to the 
steepness and the modes of the trigonometric functions. In the surface-tension term, we inserted 
the definition of the curvature (1) and made use of the identity ξ ζ δ= . 

To solve (19), we expand the surface position F into a power series of the steepness. At leading 
order there is no steepness. Thus, without undulation there should be no resonance. Therefore, 
we assume that the leading order of the stationary film thickness is constant: 

( ) ( ) ( )2 3
0 1 2 3

ˆ ˆ ˆ ...F F F X F X F Xζ ζ ζ= + + + . (20) 

With this expansion, the non-linear coupling is avoided and the non-linear equation (19) 
degenerates into a hierarchy of linear ordinary differential equations. Inserting of (20) into (19) 
yields for the leading order term 0 1F = , i.e. the stationary film thickness for a flat incline. 

At first order we obtain from (19) 
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The inhomogeneities in (21) have the following origins: the cosine term come from the gravity 
and capillary driven forcing by the change in the local inclination angle and the sine term is due 
to the curvature of the bottom, which leads to a change of the hydrostatic pressure. Note that 
(21) is not an oscillator equation anymore, since the nonlinear forcing term 4 2F−  in (19) 



overcompensates the restoring force 2F . Thus, the second order derivative in (19) that had 
been retained from the viscous forces at the free surface and that yielded the oscillatory part in 
the non-linear equation (17) looses its qualitative significance and merely results in a small 
quantitative contribution. Thus, the film flow has no intrinsic oscillation frequency and the 
homogeneous solution is an exponential function in space. Demanding that it has to remain 
finite for large distances and periodic for a periodic profile yields a zero homogeneous solution. 

According to the inhomogeneities, we solve (21) with the following ansatz:  

1 1 1
ˆ ˆcos sinF C X S X= + , (22) 

where C1 and S1 are constant to be determined. Inserting of (22) into (21) yields 
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At second order (19) yields together with (20), (22) and (23) 
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Thus at second order, the inhomogeneities, which come from the coupling of the free surface 
with the bottom contour and from nonlinearities of the free surface profile, yield a modification 
of the mean film thickness and second harmonics of the bottom contour. According to the 
inhomogeneities in (24) we choose the following ansatz: 

2 2 2 2
ˆ ˆcos2 sin 2F M C X S X= + + , (25) 

where M2, C2, and S2 are constants to be determined. Inserting of (25) into (24) yields 
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( ) ( )

( )( )

2

2 22
1 1 1 1

1 1

2 22
1 1 1 1

1 1

34
2

1 2cot 4
5

1 1 13 2cot 2
2 5

1 7 1cot cot
8 8

1 1 13 2cot 2
2 5

1 7 1cot
8 8

K

L Re
Bo

M S C Re S C
Bo

S C
Bo

N S C Re S C
Bo

C S
Bo

δ

δ α

δ δ α

α δ δ α

δ δ α

α δ

= +

 = + − 
 

 = − + + + − − 
 

 + + − + 
 

 = + − + + − 
 

 + + + + 
 

, (27) 

We finally note that at third order, the inhomogeneities results in a modification of the 
fundamental mode and in a third harmonic of the bottom contour. 
 
4 Discussion 

4.1 First order solution 
At first order in ζ, we recover the linear resonance. The first order solution for the film thickness 
(23) shows that there is a resonance if  

1 2cot 0
5

Re
Bo

α + − = . (28) 

With the mean flow velocity over the flat incline and with the definitions of Reynolds number 
and of inverse Bond number, (28) reads 

( )2 2 25 2
6 G Ca

hu u u π
λ

= + . (29) 

where ( )2 cosGu g λ π α=  is the phase velocity of gravity waves and ( ) ( )2Cau π λ σ ρ=  is 
the phase velocity of capillary waves with the wavelength of the bottom contour in infinitely 
thick liquid layers. The factor 5/6 is the inverse shape factor and takes into account the liquid 
viscosity. We remark that expanding tanh(2 )hπ λ  in a Taylor series we recover the resonance 
with capillary-gravity waves in liquids of finite thickness. 

The changes of the hydrostatic and capillary pressures yield a phase shift of π/2 with respect to 
the bottom, while the curvature effect results in a phase shift of π. The amplitude of the gravity-
driven term is proportional to cotα, thus being important at low inclination angles. At high 
inclination angles, cotα becomes small and the inverse Bond number changes only weakly with 
the inclination angle. With δ smaller but not much smaller one, the curvature term yields an 
amplitude independent from the inclination angle. For thin films at high inclination angles, the 
resonance disappears at this order and the free surface follows the bottom contour. Figure 2(a) 



gives an example for the local film thickness variation at first order at different Reynolds 
numbers. There is a resonance of the film thickness at a Reynolds number of 15, which is π/2 
out of phase with the bottom undulation. With increasing Reynolds number, the phase shift 
continuously decreases.  

For the surface profile one has to take into account the undulation of the bottom itself. In the 
Cartesian coordinates, the position of the free surface up to first order is at  

( )0 1 1 1
ˆ ˆ1 sinrelZ B F F a Xξ ζ ξ ϕ= + + = + +∆ , (30) 

where we introduced the relative amplitude of the surface contour with respect to the bottom 
contour 
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1 1 11rela S Cδ δ= + +  (31) 

and the phase shift between the free surface and the bottom contour 
1

1
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C
S

δϕ
δ
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+

. (32) 

It shows that negative S1 yield a flattening of the free surface while C1 always produces an 
increase of the relative amplitude. The corresponding free-surface positions to the film 
thicknesses of Figure 2(a) are shown in diagram (b) of the same figure. 

As appears in Figure 2(a), the phase shift between the film-thickness undulation and the bottom 
contour decreases with increasing Reynolds number. Beyond the Reynolds number for the 
maximum amplitude of the film thickness, the diminishing phase shift overcompensates the 
decline of the film thickness amplitude and yields a maximum undulation of the free surface at 
higher Reynolds number, as observed in experiments [2].  

4.2 Second order solution 
The second order solution yields a modification of the mean film thickness and second 
harmonics of the bottom contour. The mean elevation at second order M2 reaches its largest 
values at low Reynolds numbers and tends to zero at high Reynolds numbers. Up to second 
order, the free surface is at 

( ) ( ) ( )2 2
1 2 2 1 1 2 2

ˆ ˆ ˆ1 1 sin sin 2rel relZ B F F M a X a Xξ ζ ζ ζ ξ ϕ ξ ϕ= + + + = + + + ∆ + + ∆  (33) 

where we introduced the relative amplitude of the second order solution with respect to the 
bottom contour 

2 22
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and the phase shift  
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Figure 2: Film thickness at the first order (a) and free surface contour up to the first order (b) 
along the bottom contour for different Reynolds numbers. α = 8°, 1/Bo = 0, ν = 200 mm²/s,  

λ = 300 mm. 
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Figure 3(a) shows the influence of the second order solution on the surface profiles for a 
moderately wavy bottom. The higher harmonic of the second order solution produces a large 
hump at the flat side of the bottom contour, as observed in experiments [2], and another weak 
one at the steep side. With increasing Reynolds number the hump moves downstream, which is 
also in agreement with experiments reported in [2]. Figure 3(b) shows the relative amplitude of 
the surface contour at second order as a function of the Reynolds number together with that of 
the fundamental from the first order solution. The amplitude of the second harmonic has a 
maximum at lower Reynolds numbers than that of the fundamental, which is again in agreement 
with experimental observations [2].  

 
5 Conclusions 
When inertia becomes important in film flow over undulated contours, standing waves with 
amplitudes larger than the bottom occur. For their qualitative analytical description, we derived 
a nonlinear equation by applying the integral boundary-layer method in curvilinear coordinates 
that was solved in Cartesian coordinates with a perturbation approach for the steepness of the 
bottom. With this approach, we recover the qualitative features of the experimental 
observations.  

For the film thickness, we find a resonance at a mean flow velocity that is about the same as the 
phase velocity of capillary-gravity waves. Taking into account the displacement due to the 
bottom undulation, the resonance for the free surface happens at higher mean velocities due to a 
payoff between decreasing amplitude of the film-thickness undulation and a decreasing phase 
shift between film-thickness undulation and the bottom contour. Nonlinear resonance yields 
humps at the flat side of the bottom contour and at lower Reynolds numbers than the resonance 
of the fundamental in accordance with experiments.  
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Figure 3: Free surface contour along the bottom contour for different Reynolds numbers (a) 

and amplitudes of the surface profile (b) including second order terms. α = 8°, 1/Bo = 0, 
 ν = 200 mm²/s, λ = 300 mm, a = 15 mm. 
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