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We use the lubrication approximation to obtain a complete description of the steady unidirectional
flow of a thin rivulet on a vertical substrate subject to a prescribed uniform longitudinal shear stress
at its free surface. We interpret the solution we obtain both as a rivulet with prescribed semi-width
but unknown flux, and as a rivulet with prescribed flux but unknown semi-width. We systematically
categorise and analyse all of the possible flow patterns and find that whereas when the prescribed shear
stress acts downwards the velocity is always downwards throughout the rivulet, when the prescribed
shear stress acts upwards the velocity is always upwards near the edges of the rivulet, but it can
be downwards elsewhere. In particular, when the rivulet is sufficiently narrow the velocity is always
upwards throughout the rivulet. We also determine the quasi-steady stability of a rivulet in the case
of prescribed flux, and calculate when it is energetically favourable for a rivulet to split into two
narrower rivulets.

1 Introduction

Layers of fluid subject to significant forces at their free surface due to an external airflow
occur in a wide variety of practical situations, and as a result there has been considerable
theoretical work on a variety of such flows. Examples include the work by Moriarty, Schwartz
and Tuck [1] on the unsteady spreading of a thin fluid film with weak surface tension subject
to an external airflow, the work by King and Tuck [2] and King, Tuck and Vanden-Broeck [3]
on a thin film of fluid supported against gravity on an inclined plane by an upward airflow,
the work by Kriegsmann, Miksis and Vanden-Broeck [4] on the effect of a steadily moving
pressure disturbance on a thin fluid film on an inclined plane, the work by McKinley, Wilson
and Duffy [5] on a thin ridge or droplet of fluid subject to a jet of air, the work by Myers,
Charpin and Thompson [6] on the growth of ice due to droplets of supercooled fluid impacting
on a cold substrate, and the work by Villegas-Dı́az, Power and Riley [7], Black [8], and Wilson,
Duffy and Black [9] on a thin film of fluid on a horizontal cylinder subject to a uniform shear
stress due to an external airflow.

In particular, rivulets of fluid subject to significant surface-shear forces occur in a variety
of contexts, including the rivulets of rainwater and/or deicing fluid that form on the wings of
aircraft (see, for example, Myers et al. [6]), the rivulets of condensate that frequently occur
within heat exchangers (see, for example, Saber and El-Genk [10]), and even the rivulets
of rainwater that can be observed on the windscreen of a rapidly moving car on a rainy
day! These applications have motivated a number of authors to use a variety of theoretical
and numerical approaches to address various aspects of this practically important problem.
Mikielewicz and Moszynski [11] analysed the breakup of a fluid film into rivulets by comparing
the energy of the film with the energy of the possible rivulet configurations. In particular, they
considered the unidirectional flow of a rivulet on an inclined plane driven either by gravity
or by a uniform shear stress at its free surface. Eres, Schwartz and Roy [12] analysed the
unsteady fingering phenomena that occur at the contact line of a thin fluid film on an inclined
plane driven either by gravity or by a uniform shear stress at its free surface. They formulated
the unsteady partial differential equation governing the evolution of the film and solved it
numerically. Their calculations showed that for partially wetting systems with sufficiently
large static contact angles the final state is of long, straight-sided rivulets of the kind analysed
in the present work. Wilson, Duffy and Hunt [13] obtained similarity solutions for slender
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non-uniform rivulets of Newtonian and a non-Newtonian power-law fluid on an inclined plane
driven either by gravity or by a uniform shear stress at its free surface. In particular, when
surface tension is weak they found that there is a unique similarity solution representing both a
widening and shallowing sessile rivulet and a narrowing and deepening pendent rivulet; on the
other hand, when surface tension is strong they found that there are one-parameter families
of solutions representing a widening and shallowing rivulet, and a narrowing and deepening
rivulet, respectively. Recently Myers, Liang and Wetton [14] investigated the unidirectional
flow of a rivulet on an inclined plane subject to a prescribed uniform longitudinal shear stress
at its free surface. They solved the problem asymptotically for thin rivulets and numerically,
and found that the asymptotic solution is in good agreement with the numerical solution for
values of the contact angle up to about 30◦. In addition, following an approach suggested
by Schmuki and Laso [15], Myers et al. [14] calculated when it is energetically favourable
for a purely gravity-driven rivulet to split into two narrower rivulets. They also conjectured
that it is never energetically favourable for a purely shear-stress-driven rivulet to split in this
manner. In the present work we shall show that this conjecture is not correct, and calculate
when it is energetically favourable for a rivulet on a vertical substrate driven by gravity
and/or a prescribed shear stress to split. Saber and El-Genk [10] analysed the unidirectional
flow of a rivulet on an inclined plane subject to a longitudinal shear stress at its free surface.
In contrast to the works described above, the shear stress was not assumed to be uniform,
but was instead taken to be a function of the uniform velocity of the airflow above the rivulet
and the non-uniform interfacial velocity of the rivulet. Saber and El-Genk [10] investigated
the effect of the external airflow on the breakup of a fluid film into rivulets, and found good
agreement between their predictions and the experimental results of previous authors.

In the present paper we use the lubrication approximation to obtain a complete description
of the steady unidirectional flow of a thin rivulet on a vertical substrate subject to a prescribed
uniform longitudinal shear stress at its free surface.

2 Problem Formulation and Solution

Consider the steady unidirectional flow of a thin symmetric rivulet with constant semi-width
a and constant volume flux Q on a vertical substrate subject to a prescribed uniform longitu-
dinal shear stress τ at its free surface. Note that positive (negative) values of τ correspond to
the prescribed shear stress acting downwards (upwards), and that the flux Q may be either
positive or negative, indicating a net downwards or upwards flow, respectively. We assume
that the fluid is Newtonian and has constant density ρ, viscosity µ and surface tension γ.
We choose Cartesian axes Oxyz with the x axis vertically downwards, the y axis horizontal
and parallel to the substrate z = 0, and the z axis horizontal and normal to the substrate.
The velocity u = u(y, z)i and pressure p = p(x, y, z) of the fluid are governed by the familiar
mass-conservation and Navier–Stokes equations subject to the usual normal and tangential
stress balances and the kinematic condition at the (unknown) free surface z = h(y), and zero
velocity at the substrate z = 0. At the contact line y = a where h = 0 the contact angle
takes the prescribed value β, where β > 0 is the (non-zero) static contact angle.

Analytical progress can be made when the rivulet is thin (with, in particular β � 1)
in which case it is appropriate to non-dimensionalise y and a with l, z and h with βl, u
with U = ρgβ2l2/µ, Q with βl2U = ρgβ3l4/µ, p − p∞ with ρgβl, and τ with ρgβl, where
l = (γ/ρg)1/2 is the capillary length, g is gravitational acceleration and p∞ is the uniform
pressure in the surrounding atmosphere. Henceforth all quantities are non-dimensional unless
stated otherwise. The leading-order versions of the Navier–Stokes equations are simply

0 = 1 + uzz, 0 = −py, 0 = −pz, (1)
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Figure 1: Plot of Q as a function of a for τ = −3,−5/2,−2, . . . , 3. The locus of the minima,
Q = Qmin = −4a4/315, is indicated with a dashed line.

and the leading-order versions of the boundary conditions are

u = 0 on z = 0, (2)
p = −h′′ and uz = τ on z = h, (3)
h = 0 and h′ = ∓1 at y = ±a. (4)

Note that since the flow is unidirectional, the mass-conservation equation and the kinematic
condition are satisfied identically, and (since the inertia terms are all identically zero) the
solution given below is valid for all values of the Reynolds number. Solving the equations (1)
subject to the boundary conditions (2)–(4) immediately yields the simple solution

p = −h′′ =
1
a
, u =

(2h− z)z
2

+ τz, h =
a2 − y2

2a
, (5)

showing that the pressure is uniform across the rivulet and determined by the force due to
surface tension at the free surface, that the velocity is a combination of a parabolic profile
due to gravity and a linear profile due to the prescribed shear stress at the free surface, and
that the profile of the rivulet is a simple parabolic shape due to surface tension. In particular,
the maximum thickness of the rivulet occurs at y = 0 and is equal to hm = h(0) = a/2. The
free-surface velocity us = us(y), local flux ū = ū(y) and the flux Q are given by

us = u(y, h) =
h2

2
+ τh, (6)

ū =
∫ h

0
u(y, z) dz =

h3

3
+

τh2

2
(7)

and

Q =
∫ +a

−a
ū(y) dy =

4a4

105
+

2τa3

15
, (8)
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respectively. Note that the expression for Q is in agreement with the appropriate limit of the
corresponding result given by Myers et al. [14, Equation 25]. Figure 1 shows Q plotted as a
function of a for a range of values of τ and illustrates that for τ ≥ 0 it is a monotonically
increasing function of a, but for τ < 0 it initially decreases monotonically to a minimum
value of Q = Qmin (< 0), where

Qmin = −
4a4

min
315

= −3087τ4

5120
, (9)

at a = amin = −21τ/8, before increasing monotonically through the value Q = 0 at a = a0 =
−7τ/2. Whatever the sign of τ , Q = O(a3) (or O(a4) in the special case τ = 0) as a → 0+

and Q = O(a4) →∞ as a →∞.
The solution described above can be interpreted in two different ways. The simplest

interpretation (adopted by, for example, Myers et al. [14] and Saber and El-Genk [10]) is to
assume that the semi-width of the rivulet takes a prescribed value a = ā, in which case the
corresponding flux is then given explicitly by (8). Figure 2 shows Q plotted as a function of
τ for a range of values of ā. Note that each curve is a straight line and the envelope curve
is Q = Qmin = −3087τ4/5120 in τ ≤ 0. Another equally sensible interpretation (adopted
by, for example, Duffy and Moffatt [16] and Wilson and Duffy [17] in their analyses of a
gravity-driven rivulet draining down a slowly varying substrate) is to assume that the flux
takes a prescribed value Q̄, in which case the possible semi-widths are the positive solutions
of Q = Q̄, where Q is given by (8). Figure 3 shows a plotted as a function of τ for a range
of values of Q̄. In either case, once the value of a is known, the corresponding solutions for
p, u and h are given explicitly by (5). In the remainder of the present work we will describe
the behaviour of the possible rivulet solutions in both of these scenarios.

3 Flow Patterns

In their study of unidirectional rivulet flow on an inclined plane Myers et al. [14] correctly
identified that for relatively weak upwards shear there is a region of downwards flow near the
centre of the rivulet, and that for sufficiently strong upwards shear this region disappears en-
tirely resulting in upwards flow throughout the rivulet. Broadly similar results were obtained
by Saber and El-Genk [10] for the problem they addressed. In this section we systematically
categorise and analyse all of the possible flow patterns for the present problem. The five
different types of flow pattern that can occur are referred to as type I to type V behaviour,
and are sketched in Figure 4.

When τ > 0 the prescribed shear stress acts downwards and hence augments the down-
ward force of gravity. In this case the velocity is always downwards (i.e. u > 0) throughout
the rivulet, and the maximum velocity umax = us(0) = a(a + 4τ)/8 (> 0) occurs on the free
surface at y = 0 and z = hm = a/2. We refer to this simple flow pattern as type I behaviour
(Figure 4a).

On the other hand, when τ < 0 the prescribed shear stress acts upwards and hence
opposes the downwards force of gravity. This competition between the effects of gravity
and prescribed shear stress leads to more interesting behaviour than in the case τ > 0. In
particular, in the special case a = a0 = −7τ/2 there is a non-trivial solution with zero flux
in which the downwards flux due to gravity is exactly equal to the upwards flux due to
the prescribed shear stress; this is somewhat similar to the solution for a thin film of fluid
supported against gravity on an inclined plane by an upward airflow analysed by King and
Tuck [2] and King, Tuck and Vanden-Broeck [3].

In contrast to the case τ > 0, in the case τ < 0 the velocity is always upwards (i.e. u < 0)
near the edges of the rivulet, but it can be downwards (i.e. u > 0) elsewhere. Specifically,
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Figure 2: Plot of Q as a function of τ for ā = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20. The envelope
curve Q = Qmin = −3087τ4/5120 in τ ≤ 0 is indicated with a dashed line.

Figure 3: Plot of a as a function of τ for Q̄ = −100, −50, −10, −5, −1, −0.5, −0.1, 0, 0.1,
0.5, 1, 5, 10, 50, 100, 500, 1000. Note that a = a0 = −7τ/2 in the special case Q̄ = 0. The
curve a = amin = −21τ/8 is indicated with a dashed line.
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Figure 4: Sketches of the flow in the cases (a) τ > 0 (type I), (b) τ < 0 and a > −4τ (type
II), (c) τ < 0 and a = −4τ (type III), (d) τ < 0 and −2τ < a < −4τ (type IV), and (e) τ < 0
and a ≤ −2τ (type V). In each part regions of downwards flow (i.e. u > 0) are shaded in
grey while regions of upwards flow (i.e. u < 0) are unshaded. The locations of the maximum
and/or minimum velocity are marked with dots (•) and/or open circles (◦), respectively.

the curve on which the velocity is zero (which may or may not lie within the flow), denoted
by H = H(y), is given by

H = 2(h + τ) =
a(a + 2τ)− y2

a
. (10)

In particular, Hm = H(0) = a + 2τ . Note that H = 0 at y = ±b, where

b = a

(
1 +

2τ

a

) 1
2

(11)

(which lie within the flow when a > −2τ), and H = h at y = ±c, where

c = a

(
1 +

4τ

a

) 1
2

(12)

(which lie within the flow when a > −4τ).
When a > −4τ we have Hm > hm and the velocity is downwards in the regions

0 < z < H for c < |y| < b and 0 < z ≤ h for |y| < c, (13)
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Figure 5: Plots of the contours of u in the cases (a) Q = 1, τ = 1, a ' 1.7139 (type I),
(b) Q = 1, τ = −3/4 (τ2 < τ < 0), a ' 3.3336 (type II), (c) Q = −1, τ = −5/2 (τ < τ1),
a ' 8.7103 (type IV), and (d) Q = −1, τ = −5/2 (τ < τ1), a ' 1.5383 (type V). In each part
there are eight equally spaced contours, plus an additional contour corresponding to u = 0 in
parts (b) and (c). In each part regions of downwards flow (i.e. u > 0) are shaded in grey while
regions of upwards flow (i.e. u < 0) are unshaded. The locations of the maximum and/or
minimum velocity are marked with dots (•) and/or open circles (◦), respectively. Note that
the length of the axes and the contour interval are different in each part of this figure.

but upwards elsewhere, where the semi-width of the region of downwards flow, b (< a), is
given by (11), and the semi-width of the region in which there is downwards flow all the way
across the rivulet, c (< b), is given by (12). In particular, this means that in this case the
free-surface velocity satisfies us > 0 for |y| < c, us = 0 at |y| = c, and us < 0 for c < |y| < a.
We refer to this more interesting flow pattern as type II behaviour (Figure 4b).

When a = −4τ we have Hm = hm = −2τ , b = −2
√

2τ and c = 0, and the region of
downwards flow just touches the free surface at y = 0. We refer to this flow pattern as type
III behaviour (Figure 4c). Type III behaviour is intermediate between the type II behaviour
described above and the type IV behaviour described below.

When −2τ < a < −4τ we have 0 < Hm < hm and the velocity is downwards in the region

0 < z < H for |y| < b, (14)

but upwards elsewhere. We refer to this flow pattern as type IV behaviour (Figure 4d). Note
that both the solution a = a0 = −7τ/2 for which Q = 0 and the solution a = amin = −21τ/8
for which Q = Qmin lie in this interval and hence both have type IV behaviour.

When a > −2τ the maximum velocity umax = (a + 2τ)2/8 (> 0) occurs within the flow
at y = 0 and z = hm +τ = (a+2τ)/2, and the minimum velocity umin = −τ2/2 (< 0) occurs
on the free surface at y = ±b and z = −τ . In particular, this means that when the flow
pattern is of type II the location of umax lies further from the substrate than the location of
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umin, but that the situation is reversed when it is of type IV. In the special case of type III
behaviour the locations of umin and umax lie at exactly the same distance from the substrate.

Finally, when a ≤ −2τ we have Hm ≤ 0 and the velocity is always upwards throughout
the rivulet, and the minimum velocity umin = us(0) = a(a + 4τ)/8 (< 0) occurs on the free
surface at y = 0 and z = hm = a/2. We refer to this final possible flow pattern as type V
behaviour (Figure 4e).

As previously mentioned, Figure 4 shows sketches of the flow patterns of types I–V. In
particular, Figure 4 shows the regions of upwards flow and downwards flow, and the locations
of umax and/or umin. Figure 5 shows plots of the contours of u for several values of Q and
τ illustrating examples of flow patterns of types I, II, IV and V. Note that the flow patterns
shown in parts (c) and (d) of Figure 5 have the same flux Q and prescribed shear stress τ ,
but different semi-widths a.

The different flow patterns that can occur when τ < 0 can be understood by recalling
from (7) that the local downwards flux due to gravity varies with h like h3 while the local
upwards flux due to shear stress varies like h2. Thus in the thinnest part of the rivulet (and,
in particular, near the edges where h = 0) the effect of shear is always stronger than that
due to gravity and the flow is always upwards. However, if the rivulet is sufficiently thick
(specifically, if h > −τ) then the effect of gravity is stronger than that due to shear stress near
the substrate (which is furthest away from the free surface where the shear stress is acting)
and so the flow there is downwards. If the rivulet is even thicker (specifically, if h > −2τ)
then the effect of gravity is sufficiently strong to make the fluid flow downwards all the way
across the rivulet.

4 Prescribed Semi-Width a = ā

If a takes the prescribed positive value ā > 0 then, as Figures 1 and 2 show, there is a unique
solution for Q for all values of τ . In particular, in the special case of no prescribed shear
stress (τ = 0) the flux of a purely gravity-driven rivulet is given by Q = 4ā4/105.

Figure 6 shows a sketch of Q as a function of a and summarises when the different types
of flow pattern occur for τ > 0, τ = 0 and τ < 0. Specifically, Figure 6 shows that when
τ ≥ 0 the solution is always of type I, but that when τ < 0 the solution is of type II for
a > −4τ , type III when a = −4τ , type IV for −2τ < a < −4τ , and type V for 0 < a ≤ −2τ .
Figure 6 also shows that the flux is negative when τ < 0 and a < a0, zero when τ < 0 and
a = a0, but positive otherwise.

Since in this case the shape of the rivulet is independent of τ , increasing (decreasing)
the value of τ from zero has the effect of increasing (decreasing) the velocity u and hence
increasing (decreasing) the flux Q.

5 Prescribed Flux Q = Q̄

If Q takes the prescribed value Q̄ (which may be positive, negative or zero) then, as Figures
1 and 3 show, the number of solutions for a depends on the sign of τ and the value of Q̄.
When τ ≥ 0 there is one solution for all positive values of Q̄, but no solution when Q̄ is zero
or negative. On the other hand, when τ < 0 there is one solution for Q̄ ≥ 0, two solutions for
Qmin < Q̄ < 0 (the narrower one satisfying 0 ≤ a < amin and the wider one amin < a ≤ a0),
one solution a = amin when Q̄ = Qmin, and no solution when Q̄ < Qmin, where Qmin is
given by (9). In particular, in the special case of no prescribed shear stress (τ = 0) we recover
the explicit expression for the semi-width of a purely gravity-driven rivulet obtained by Duffy
and Moffatt [16], namely a = (105Q̄/4)1/4.

Figure 7 shows a sketch of a as a function of τ and summarises when the different types of
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Figure 6: Sketch of Q as a function of a summarising when the different types of flow pattern
occur for τ > 0, τ = 0 and τ < 0.

Figure 7: Sketch of a as a function of τ summarising when the different types of flow pattern
occur for Q̄ > 0, Q̄ = 0 and Q̄ < 0.
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flow pattern occur for Q̄ > 0, Q̄ = 0 and Q̄ < 0. Specifically, Figure 7 shows that when Q̄ > 0
there is one solution for all values of τ and the semi-width of this solution is a monotonically
decreasing function of τ . This solution is of type I for τ ≥ 0, type II for τ2 < τ < 0, type III
when τ = τ2, and type IV for τ < τ2, where τ2 (< 0) is given by

τ2 = −
(

105Q̄

128

) 1
4

. (15)

Figure 7 also shows that when Q̄ < 0 there are two solutions for τ < τmax (the narrower of
which is a monotonically increasing function of τ , and the wider of which is a monotonically
decreasing function of τ), one when τ = τmax, and none for τ > τmax, where τmax (< 0) is
given by

τmax = −
(
−5120Q̄

3087

) 1
4

. (16)

For τ ≤ τ1 the narrower solution is of type V, where τ1 (< τmax) is given by

τ1 = −
(
−35Q̄

16

) 1
4

, (17)

but all the other solutions are of type IV. Figure 7 also shows that the solution in the special
case Q̄ = 0 is always of type IV.

In the limit of small positive flux Q̄ → 0+ for τ > 0 or small negative flux Q̄ → 0− for
τ < 0 there is always a solution that becomes narrow (and shallow) according to

a ∼
(

15Q̄

2τ

) 1
3

→ 0+. (18)

When τ < 0 there are two solutions in the limit of small negative flux Q̄ → 0−, and the
semi-width of the wider solution approaches the finite value a = a0 = −7τ/2 according to

a = −7τ

2
− 30Q̄

49τ3
+ O(Q̄2τ−7). (19)

In the limit of large positive flux, Q̄ → ∞, the rivulet always becomes wide (and deep)
according to

a =

(
105Q̄

4

) 1
4

− 7τ

8
+ O(Q̄− 1

4 τ2). (20)

for all values of τ . There is, of course, no solution in the limit of large negative flux, Q̄ → −∞.
In the limit of small shear stress, τ → 0, the solution is a regular perturbation about the

solution in the case τ = 0 and is given by (20). In the limit of large positive shear stress,
τ → ∞, the effect of the shear stress overwhelms that of gravity and the rivulet becomes
narrow (and shallow) according to (18) when Q̄ > 0. However, the behaviour in the limit
of large negative shear stress, τ → −∞, is somewhat more complicated. Whereas for the
narrower solution when Q̄ < 0 the effect of the shear stress overwhelms that of gravity and
the rivulet again becomes narrow (and shallow) according to (18), for both the wider solution
when Q̄ < 0 and the solution when Q̄ > 0 the effects of shear stress and gravity balance each
other at leading order and the rivulet becomes wide (and deep) according to (19).

Unlike in the case of prescribed semi-width a = ā described in the previous section, in
the case of prescribed flux Q = Q̄ the shape of the rivulet depends on τ via a, and so the
dependence of a on τ is somewhat more complicated than the dependence of Q on τ described
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previously. When τ > 0 the velocity is always downwards and the effect of increasing the
shear stress from zero is always to increase the local velocity of the fluid throughout the
rivulet (i.e. ∂u/∂τ > 0 everywhere). Hence, since the flux must remain constant, the rivulet
always becomes narrower (and shallower), i.e. ∂a/∂τ = −7a/(8a + 21τ) < 0. As we have
already seen, when τ < 0 the situation is somewhat more complicated. In particular, the
velocity is always upwards near the edges of the rivulet, but may be downwards elsewhere.
Moreover, the effect of decreasing the shear stress from zero can be either to increase or to
decrease the local velocity. (Specifically, ∂u/∂τ > 0 everywhere both when 0 < a < amin and
when a > −21τ , ∂u/∂τ < 0 everywhere when amin < a < −14τ/3, but ∂u/∂τ is positive is
some parts of the rivulet and negative in others when −14τ/3 < a < −21τ .) However, the
net effect of the changes to the size of the rivulet and to the velocity along it are that when
a < amin the rivulet always becomes narrower (and shallower), i.e. ∂a/∂τ > 0, whereas when
a > amin it always becomes wider (and deeper), i.e. ∂a/∂τ < 0.

6 Stability

A full stability analysis of the rivulets described here is beyond the scope of the present
work, but in the case of prescribed flux Q = Q̄ we can make useful progress by generalising
the quasi-steady stability analysis of a purely gravity-driven rivulet undertaken by Wilson
and Duffy [17]. Following the earlier work we assume that the flow remains symmetric and
unidirectional and that the quasi-steady motion is driven entirely by that of the moving
contact line y = A, where A = A(t). Furthermore, we assume that the speed of the moving
contact line, A′, and the dynamic contact angle, θ = θ(t), are related by a general “Tanner
law” in the form A′ = F (θ), where the function F (θ) satisfies F (1) = 0 and is monotonically
increasing near θ = 1. Perturbing about the constant steady-state values of the semi-width
and the contact angle A = a and θ = 1 by writing A = a + a1(t) and θ = 1 + θ1(t), and
making use of the fact that the perturbed rivulet must also satisfy the prescribed volume-flux
condition Q = Q̄, yields

a′1 =
M(λa1)m

m!
, (21)

where M = dmF/dθm|θ=1 > 0 (m = 1, 3, 5, . . .) is the first non-zero derivative of F (θ)
evaluated at θ = 1 and

λ = − QA

Qθ

∣∣∣∣
A=a, θ=1

= − 8a + 21τ

2a(3a + 7τ)
. (22)

Equation (21) can be immediately solved for a1 and this solution shows that, whatever the
specific form of F (θ), the stability of the rivulet depends only on the sign of λ. Specifically,
the rivulet is unstable to small perturbations when λ > 0 and stable when λ < 0. Thus
we can immediately deduce that when τ ≥ 0 the rivulet is always stable, but when τ < 0
the rivulet is unstable when −7τ/3 < a < amin = −21τ/8. Specifically when τ < 0 and
Q̄ ≥ 0 the rivulet is always stable, but when τ < 0 and Qmin ≤ Q̄ < 0 the wider rivulet is
always stable while the narrower rivulet is stable when 0 < a < −7τ/3 but unstable when
−7τ/3 < a < amin.

7 Rivulet Splitting

Myers et al. [14] addressed the question of whether or not it is ever energetically favourable
for a rivulet to split into two or more subrivulets. In this section we revisit this problem and
in so doing correct and extend the results they obtained. In particular, we shall calculate
when it is energetically favourable for a rivulet driven by gravity and/or a prescribed shear
stress to split.
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The total energy of the rivulet is the sum of its kinetic energy and surface energy. Mo-
mentarily reverting to dimensional variables, the kinetic energy (per unit length) is given
by

ρ

2

∫ +a

−a

∫ h

0
u2 dz dy (23)

and the surface energy, or, more precisely, the difference between the surface energy of the
rivulet and the surface energy of the dry substrate (per unit length) is given by

γ

[∫ +a

−a
(1 + h′2)

1
2 dy − 2a cos β

]
(24)

(see, for example, Mikielewicz and Moszynski [11], Myers et al. [14], and Saber and El-Genk
[10]). Thus, if we non-dimensionalise energy (per unit length) with ρU2βl2 = ρ3g2β5l6/µ2

then the leading-order expression for the energy of the thin rivulet on a vertical substrate
considered in the present work, E, is given by

E =
∫ +a

−a

h5

15
+

5τh4

24
+

τ2h3

6
dy +

1
W

[
1
2

∫ +a

−a
h′2 dy + a

]
, (25)

which can be evaluated explicitly to yield

E =
16a6

10395
+

2τa5

189
+

2τ2a4

105
+

4a

3W
, (26)

where

W =
ρlU2

γβ
=

γ2β3

glµ2
(27)

is an appropriately defined Weber number (a non-dimensional measure of the relative impor-
tance of surface energy and kinetic energy). The expression for the kinetic energy in (26) is
in agreement with the appropriate limit of the corresponding result given by Myers et al. [14,
Equation 40] if the typographical error in their coefficient a2 is corrected (specifically, their
mL should be

√
C). The expression for the surface energy in (26) corrects the corresponding

result given by Myers et al. [14, Equation 41], who mistakenly omitted a contribution due
to the surface energy of the free surface. In addition, it should be noted that, since the flow
is rectilinear, the inertia terms in the governing equations are identically zero and so the
comments made by Myers et al. [14] about the restriction on the applicability of the thin-film
approximation are erroneous: the present analysis (and, in particular, the present expression
for E) is valid for all values of the Reynolds number.

It can readily be demonstrated that (for a fixed value of τ) E is a monotonically increasing
function of a. Thus wider rivulets always have more energy than narrower ones, and hence
it is never energetically favourable for a rivulet to split into one or more wider rivulets.
However, it can be energetically favourable for a rivulet to split into one or more narrower
rivulets. Specifically, it is energetically favourable for a rivulet with semi-width a and flux
Q to split into two rivulets, one with semi-width aq and flux q (0 < q ≤ Q/2) and the other
with semi-width aQ−q and flux Q− q, if the difference between the energies of the two states,
∆E, defined by

∆E = E − [E(a = aq) + E(a = aQ−q)] , (28)

is positive.

7.1 Purely Gravity-Driven Case

In the special case of a purely gravity-driven rivulet (i.e. the case τ = 0) the semi-width is
given explicitly in terms of the flux by a = (105Q/4)1/4, and when a < ac (or equivalently
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when Q < Qc) then ∆E < 0 for all 0 < q ≤ Q/2, but when a = ac (Q = Qc) then ∆E = 0
at q = Q/2, and when a > ac (Q > Qc) then ∆E > 0 in an interval Q/2 − q∗ < q ≤ Q/2,
where q∗ (> 0) is a monotonically increasing function of Q. Thus for a > ac (or equivalently
for Q > Qc) it is energetically favourable for the rivulet to split into two narrower rivulets,
where the critical values of the semi-width, ac, and the flux, Qc, are given by

ac =

[
3465(2

3
4 − 1)

4(1− 2−
1
2 )W

] 1
5

' 4.5805

W
1
5

, Qc =
4

105

[
3465(2

3
4 − 1)

4(1− 2−
1
2 )W

] 4
5

' 16.7703

W
4
5

. (29)

This result agrees qualitatively with the work of Myers et al. [14], who calculated ac and Qc
numerically for a range of values of β.

7.2 Purely Shear-Stress-Driven Case

In the limit of large positive shear stress τ →∞ when Q > 0, and for the narrower rivulet in
the limit of large negative shear stress τ → −∞ when Q < 0, the leading order semi-width is
given by a = (15Q/2τ)1/3, and the behaviour of ∆E is qualitatively the same as that in the
case τ = 0 described above, and the critical values of the semi-width and the flux are now
given by

ac =

[
70(2

2
3 − 1)

(1− 2−
1
3 )τ2W

] 1
3

' 5.8413

τ
2
3 W

1
3

, Qc =
28(2

2
3 − 1)

3(1− 2−
1
3 )τW

' 26.5750
τW

. (30)

In particular, this result shows that the conjecture proposed by Myers et al. [14] on the
basis of their numerical calculations that it is never energetically favourable for a purely
shear-stress-driven rivulet to split is not correct.

7.3 General Case

When both gravity and shear-stress effects are significant analytical progress is harder. How-
ever, we can still make progress numerically. Before doing this it is convenient to remove
W from the problem by scaling a with W−1/5, τ with W−1/5, Q with W−4/5, and E with
W−6/5. When Q > 0 the behaviour is qualitatively the same as that in the case τ = 0, i.e.
there are critical values of the semi-width, ac, and the flux, Qc, above which it is energeti-
cally favourable for a rivulet to split into two narrower rivulets, and the critical situation is
that of splitting into two equal rivulets each with half the flux of the original, i.e. the case
q = Q/2. When Qmin ≤ Q < 0 (which is possible only when τ < 0) the situation is somewhat
more complicated. In this case there are always two possible rivulets with the same flux (the
narrower one satisfying 0 < a ≤ amin and the wider one amin < a < a0). As we have already
seen, it is always energetically favourable for the wider rivulet to “split” into the narrower
rivulet with the same flux. On the other hand, the behaviour of the narrower rivulet is some-
what similar to that of the rivulets in the case Q > 0 described previously. Specifically, for
τc ≤ τ < 0, where τc is found numerically to be approximately equal to −2.5038 W−1/5, it is
never energetically favourable for the smaller rivulet to split, but for τ < τc there is a critical
value of the semi-width ac (0 < ac ≤ amin) above which and a critical value of the flux Qc
(Qmin ≤ Qc < 0) below which it is energetically favourable for the rivulet to split into two
narrower rivulets, and the critical situation is again that of splitting into two equal rivulets
each with half the flux of the original, i.e. the case q = Q/2. In all cases the values of ac and
Qc can be determined numerically by calculating the values of a and Q for which ∆E = 0 at
q = Q/2. Note that ac = amin(τc) ' 6.5725 W−1/5 and Qc = Qmin(τc) ' −23.6954 W−4/5.

Figures 8 and 9 show W 1/5a and W 4/5Q, respectively, plotted as functions of W 1/5τ and
indicate when it is energetically favourable and when it is energetically unfavourable for a
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Figure 8: Plot of W 1/5a as a function of W 1/5τ indicating when it is energetically favourable
(denoted by “F”) and when it is energetically unfavourable (denoted by “UF”) for a rivulet
to split. The curves a = amin = −21τ/8 and a = a0 = −7τ/2 are indicated with dashed
lines.

Figure 9: Plot of W 4/5Q as a function of W 1/5τ indicating when it is energetically favourable
(denoted by “F”) and when it is energetically unfavourable (denoted by “UF”) for a rivulet
to split. The curve Q = Qmin = −3087τ4/5120 in τ ≤ 0 is indicated with a dashed line.
Note that when τ < 0 and Qmin < Q < 0 the region in which it is unfavourable to split
applies only to the narrower rivulet.
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Figure 10: Enlargement of Figure 9 showing the detail near τ = τc.

rivulet to split. Figure 10 shows the detail of Figure 9 near τ = τc where there is a narrow
region in which it is favourable for a rivulet to split that is difficult to discern on the original
figure. When interpreting Figures 9 and 10 it should be remembered that when τ < 0 and
Qmin < Q < 0 there are two possible rivulets with the same flux and, since it is always
favourable for the wider rivulet to split, the region in which it is unfavourable to split shown
in Figures 9 and 10 applies only to the narrower rivulet.

8 Conclusions

In the present paper we used the lubrication approximation to obtain a complete description
of the steady unidirectional flow of a thin rivulet on a vertical substrate subject to a prescribed
uniform longitudinal shear stress at its free surface. We interpreted the solution we obtained
both as a rivulet with prescribed semi-width a = ā but unknown flux Q, and as a rivulet with
prescribed flux Q = Q̄ but unknown semi-width a; the results are summarised in Figures 6
and 7, respectively. In particular, in the case of prescribed flux we found that when τ ≥ 0
there is one possible rivulet solution for Q̄ > 0, but no solution when Q̄ ≤ 0. On the
other hand, when τ < 0 there is one possible rivulet solution for Q̄ ≥ 0, two solutions for
Qmin < Q̄ < 0 (the narrower one with 0 ≤ a < amin and the wider one amin < a ≤ a0), one
solution with a = amin when Q̄ = Qmin, and no solution when Q̄ < Qmin. We systematically
categorised and analysed all of the possible flow patterns and found that whereas for τ ≥ 0
the velocity is always downwards throughout the rivulet, when τ < 0 the velocity is always
upwards near the edges of the rivulet, but it can be downwards elsewhere. In particular,
when a ≤ −2τ the velocity is always upwards throughout the rivulet. We determined the
quasi-steady stability of a rivulet in the case of prescribed flux and found that the rivulet is
always stable except when τ < 0 and Qmin ≤ Q̄ < 0, in which case the narrower rivulet is
stable when 0 < a < −7τ/3 but unstable when −7τ/3 < a < amin. We also calculated when
it is energetically favourable for a rivulet to split into two narrower rivulets, and the results
are summarised in Figures 8 and 9.
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Thus far all the results have been presented in terms of non-dimensional quantities for
clarity and simplicity. It is, however, informative to translate these results into dimensional
terms. For example, for rivulets of water (with, say, ρ = 103 kgm−3, µ = 10−3 N s m−2,
γ = 70 × 10−3 N m−1, and β = 30◦) and of a silicone oil (with, say, ρ = 103 kgm−3,
µ = 20 × 10−3 N s m−2, γ = 20 × 10−3 N m−1, and β = 40◦) the widths of both a purely
gravity-driven rivulet with volume flux 1 cm3 s−1 (typical of the volume fluxes investigated
by Hewitt and Lacey [18] and Schmuki and Laso [15]) and a rivulet with zero net volume flux
with prescribed (upwards) shear stress 10 N m−2 (typical of the shear stresses investigated by
Hewitt and Lacey [18]) are all around 0.5 cm. Furthermore, the magnitude of the minimum
value of the flux when the prescribed (upwards) shear stress is 10 N m−2 is around 10 cm3 s−1

for water, but is an order of magnitude smaller for the silicone oil.
Note that, although perhaps slightly obscured by the choice of non-dimensionalisation,

the results described in the present work include the very simple special case of a purely
shear-stress-driven rivulet. Specifically, if we revert to dimensional variables and set g = 0
then we have u = τz/µ, us = τh/µ, ū = τh2/2µ and Q = 2τβ2a3/15µ. In this case there
is always single rivulet for each value of ā (> 0) or Q̄ (provided that it has the same sign
as τ), and the flow is always in the same direction as the prescribed shear stress throughout
the rivulet (i.e. the flow pattern is always of type I when τ > 0 and always of type V when
τ < 0). As expected, all of these results coincide with the leading-order behaviour of the
solutions described in the present paper in the limit of large positive shear stress when Q > 0
and large negative shear stress when Q < 0.

The present analysis is restricted to the simplest case of steady unidirectional flow, but
in practice a variety of more complicated phenomena, including break-up into drops, and
both steady and unsteady rivulet meandering, can also occur. Nevertheless, as the series
of experiments on rivulet flow in the absence of a prescribed shear stress undertaken by
Schmuki and Laso [15] show, there is a significant region of parameter space in which steady
unidirectional flow occurs.

Acknowledgement

Both authors acknowledge interesting discussions with Ms Laura Fariss (formerly of the
Department of Mathematics, University of Strathclyde) concerning rivulets with significant
surface-shear forces.

References

[1] J. A. Moriarty, L. W. Schwartz, and E. O. Tuck, “Unsteady spreading of thin liquid films
with small surface tension,” Phys. Fluids A 3, 733–742 (1991).
[2] A. C. King and E. O. Tuck, “Thin liquid layers supported by steady air-flow surface
traction,” J. Fluid Mech. 251, 709–718 (1993).
[3] A. C. King, E. O. Tuck, and J.-M. Vanden-Broeck, “Air-blown waves on thin viscous
sheets,” Phys. Fluids A 5, 973–978 (1993).
[4] J. J. Kriegsmann, M. J. Miksis, and J.-M. Vanden-Broeck, “Pressure driven disturbances
on a thin viscous film,” Phys. Fluids 10, 1249–1255 (1998).
[5] I. S. McKinley, S. K. Wilson, and B. R. Duffy, “Spin coating and air-jet blowing of thin
viscous drops,” Phys. Fluids 11, 30–47 (1999).
[6] T. G. Myers, J. P. F. Charpin, and C. P. Thompson, “Slowly accreting ice due to super-
cooled water impacting on a cold surface,” Phys. Fluids 14, 240–256 (2002).
[7] M. Villegas-Dı́az, H. Power, and D. S. Riley, “On the stability of rimming flows to two-
dimensional disturbances,” Fluid Dyn. Res. 33, 141–172 (2003).

16



[8] G. J. B. Black, “Theoretical Studies of Thin-Film Flows,” M. Phil. Thesis, University of
Strathclyde, Glasgow, UK, 2002.
[9] S. K. Wilson, B. R. Duffy, and G. J. B. Black, “Thin-film flow on a stationary or uniformly
rotating horizontal cylinder subject to a prescribed uniform shear stress at the free surface
of the film” Submitted for publication (2004).
[10] H. H. Saber and M. S. El-Genk, “On the breakup of a thin liquid film subject to interfacial
shear,” J. Fluid Mech. 500, 113–133 (2004).
[11] J. Mikielewicz and J. R. Moszynski, “An improved analysis of breakdown of thin liquid
films,” Archives of Mechanics 30, 489–500 (1978).
[12] M. H. Eres, L. W. Schwartz, and R. V. Roy, “Fingering phenomena for driven coating
films,” Phys. Fluids 12, 1278–1295 (2000).
[13] S. K. Wilson, B. R. Duffy, and R. Hunt, “A slender rivulet of a power-law fluid driven
by either gravity or a constant shear stress at the free surface,” Q. J. Mech. Appl. Math. 55,
385–408 (2002).
[14] T. G. Myers, H. X. Liang, and B. Wetton, “The stability and flow of a rivulet driven by
interfacial shear and gravity,” Int. J. Non-Linear Mech. 39, 1239–1249 (2004).
[15] P. Schmuki and M. Laso, “On the stability of rivulet flow,” J. Fluid Mech. 215, 125–143
(1990).
[16] B. R. Duffy and H. K. Moffatt, “Flow of a viscous trickle on a slowly varying incline,”
Chem. Eng. J. 60, 141–146 (1995).
[17] S. K. Wilson and B. R. Duffy, “On the gravity-driven draining of a rivulet of viscous
fluid down a slowly varying substrate with variation transverse to the direction of flow,” Phys.
Fluids 10, 13–22 (1998).
[18] G. F. Hewitt and P. M. C. Lacey, “The breakdown of the liquid film in annular two-phase
flow,” Int. J. Heat Mass Transfer 8, 781–791 (1965).

17




