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Wetting is of course fundamental to coating processes — and indeed a host of other important
liquid flows. The phenomenon has been intensively studied at various length scales ranging
from molecular motion to continuum flow. Models based on the continuum hypothesis, i.e.
those involving solutions of the Navier-Stokes equations, offer the greatest scope for efficiently
capturing an entire coating flow, e.g. from distribution die to dryer. However, most such models
suffer infamous difficulties in dealing with moving contact lines, namely an inability to determine
the contact angle intrinsically and a need for some form of slip to be imposed or allowed on the
solid surface [1].

A continuum model which does not exhibit these limitations is that now called the ‘interface
formation” model, developed by Shikhmurzaev [2]. Central to this model is the idea that the
surface tensions in the liquid-gas and solid-liquid interfaces deviate from their respective equi-
librium values as the contact line is approached. This model removes the stress singularities
associated with other models, and produces the contact angle as part of its solution. Despite
comparing very well to numerous experimental observations [3] and offering the potential to
model ‘hydrodynamic assist’ [4], elements of the model have been criticised — particularly the
relaxation of the surface tensions for pure liquids [5].

The purpose of this paper is to explore the relaxation of interfa-
cial tensions using an alternative model, based on statistical physics, 7 IS SIS
namely the lattice Boltzmann method (LBM). The LBM is growing 7/
in popularity as a numerical method for solving a wide range of hy-
drodynamic problems, including multiphase flows and porous media.
There are several multiphase lattice Boltzmann models, but the one
used here is based on that developed by He et al. [6], which is appro-
priate for a single-component two-phase system (i.e. a liquid and its
vapour). The model uses the Carnahan and Starling [7] equation of
state and features solid-liquid, liquid-vapour and solid-vapour inter-
faces of finite thickness, across which the fluid density varies smoothly
but rapidly between the different phases. The surface tension in these
interfaces can be calculated by integrating the square of the density
gradient across the thickness of the interface [8] and hence provides
a means of investigating hydrodynamic influences on the surface ten-
sion. A wetting model for this system has recently been developed [9] Figure 1: The two-
and is here applied to the two-phase cavity flow shown in Fig. 1. phase cavity
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Preliminary results are presented in Fig. 2, which plots the (dimensionless) solid-liquid in-
terfacial tension as a function of position along the moving boundary. A clear variation in the
interfacial tension is observed, which is influenced by the speed of the moving boundary. Work
is presently underway to explore this phenomenon further — considering the other interfaces,
offering more quantitative calculations of relaxation times, and investigating the variation of the
contact angle and the compatibility of the results with Young’s equation under dynamic wetting
conditions. These results will be presented in the full paper.
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Figure 2: Dimensionless solid-liquid interfacial tension as a function of position along the moving
solid boundary. The three-phase region represents the confluence of the three diffuse interfaces.
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