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Introduction 
When a temperature difference occurs along a gas/liquid interface, a surface tension gradient is 

generated, which causes static equilibrium impossible. Thermocapillary flows are driven from a low-

surface-tension region to a high-surface-tension region. Such flows are observed in several systems, 

including combustion processes, welding pools, crystal-growth processes, droplet coalescence and 

formation, etc. In this work, we consider liquid layers on heated substrates, which can be encountered in 

liquid film coatings. A flat substrate has been used for investigating thermocapillary flows, but only a few 

studies consider that over uneven substrates. 

Asymptotic theory was rarely used to study such flows under a liquid layer over an uneven substrate. 

We defined flow conditions different from the previous studies, and it results in different asymptotic 

solutions. Moreover, the conditions to ensure the stability are chosen so that the solutions can directly 

reflect how the heat and flow behaviors depend on system parameters including substrate topography. 

The system is simplified as two-dimensional liquid layer over the uneven substrate, which is described 

by a sinusoidal wave. The liquid layer is heated below from the substrate and is cooled by the gas. A 

thickness of the liquid layer varies along the horizontal direction. The temperature at the interface above 

the trough of the substrate is low because the distance between the interface and the substrate is far. On 

the contrary, the interface above the crest has a relatively high temperature. Therefore, the resulted 

temperature gradient along the interface causes the surface tension gradient. The surface tension 

gradient drives thermocapillary flows, where a vortex exists in a unit cell.  

In the present work, the buoyancy force inside the layer is negligible, and the flows are caused by the 

thermocapillary force along the interface. The liquid layer is, however, relatively thick in order not to allow 

interactions between the interface and the substrate, such as disjoining pressure. Moreover, low 

Marangoni and capillary numbers are considered so that the interface deformation is insignificant. We 

obtained second-order solutions by using a regular perturbation theory to investigate the heat transfer 

and fluid flows inside the liquid layer over the sinusoidal substrate. 
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Mathematical description 

The sinusoidal substrate is defined by 𝑓𝑓(𝑥𝑥′) = ℎ sin(2𝜋𝜋𝑥𝑥′ 𝜆𝜆⁄ ), where 𝜆𝜆 is the wavelength and ℎ is the 

amplitude. The position of the interface is 𝑦𝑦′ = 𝑙𝑙 + 𝑑𝑑′. Herein, the mean layer depth, when the interface is 

flat, is defined by 𝑙𝑙, and the disturbance from the flat interface is defined by 𝑑𝑑′. A unit cell is a region 

bounded by 𝑥𝑥′ = 𝑛𝑛𝜆𝜆 − 𝜆𝜆 4⁄  and 𝑥𝑥′ = 𝑛𝑛𝜆𝜆 + 𝜆𝜆 4⁄ , where 𝑛𝑛 is an arbitrary integer. The aspect ratio of the unit 

cell is 𝐴𝐴 = 2𝜋𝜋 𝑑𝑑 𝜆𝜆⁄ , and the amplitude ratio is 𝐻𝐻 = ℎ 𝑑𝑑⁄ . 

Scaling by dimensionless variables 

𝑥𝑥 = 𝑥𝑥′ (𝜆𝜆 2𝜋𝜋⁄ )⁄ , 𝑦𝑦 = 𝑦𝑦′ 𝑙𝑙⁄ , 𝑢𝑢 = 𝑢𝑢′ 𝑈𝑈⁄ , 𝑣𝑣 = 𝑣𝑣′ 𝐴𝐴𝑈𝑈,⁄  𝑇𝑇 = (𝑇𝑇′ − 𝑇𝑇𝑖𝑖′) △ 𝑇𝑇𝑖𝑖′⁄ , the system is governed by  

𝑀𝑀𝑀𝑀 𝐴𝐴 �𝑢𝑢 𝑇𝑇𝑥𝑥 + 𝑣𝑣 𝑇𝑇𝑦𝑦� = 𝐴𝐴2𝑇𝑇𝑥𝑥𝑥𝑥 + 𝑇𝑇𝑦𝑦𝑦𝑦, 

𝑅𝑅𝑅𝑅 𝐴𝐴 �𝑢𝑢 𝑤𝑤𝑥𝑥 + 𝑣𝑣 𝑤𝑤𝑦𝑦� = 𝐴𝐴2𝑤𝑤𝑥𝑥𝑥𝑥 +𝑤𝑤𝑦𝑦𝑦𝑦, 

𝑤𝑤 = −𝜓𝜓𝑦𝑦𝑦𝑦 − 𝐴𝐴2𝜓𝜓𝑥𝑥𝑥𝑥. 

Introducing the vorticity 𝑤𝑤 and the stream function 𝜓𝜓, we used the vorticity-stream function formulation to 

describe the momentum transfer. The characteristic velocity 𝑈𝑈 = −𝜎𝜎𝑇𝑇 △ 𝑇𝑇𝑖𝑖′ 𝜇𝜇⁄ , where 𝜎𝜎𝑇𝑇  is the thermal 

coefficient of surface tension; △ 𝑇𝑇𝑖𝑖′ is the characteristic temperature difference along the interface, and 𝑇𝑇𝑖𝑖′ 

is the characteristic interfacial temperature. The Marangoni number, Reynolds number, Prandtl number, 

capillary number, and Biot number are defined by 

𝑀𝑀𝑀𝑀 =
𝑈𝑈𝑙𝑙
𝜅𝜅

,𝑅𝑅𝑅𝑅 =
𝑈𝑈𝑙𝑙
𝜈𝜈

,𝑃𝑃𝑃𝑃 =
𝜈𝜈
𝜅𝜅

,𝐶𝐶𝑀𝑀 =
𝜇𝜇𝑈𝑈
𝜎𝜎0

 ,𝐵𝐵𝐵𝐵 =
ℎ𝑖𝑖𝑙𝑙
𝑘𝑘𝑙𝑙

. 

In this study, we considered the orders of 𝑀𝑀𝑀𝑀 = 𝑂𝑂(𝐴𝐴),𝑅𝑅𝑅𝑅 = 𝑂𝑂(𝐴𝐴),𝑃𝑃𝑃𝑃 = 1,𝐶𝐶𝑀𝑀 = 𝑂𝑂(𝐴𝐴6),𝐵𝐵𝐵𝐵 = 𝑂𝑂(1)  and 

𝐻𝐻 = 𝑂𝑂(0.1). 

The boundary conditions are 

 𝑇𝑇𝑦𝑦−𝐴𝐴2𝑑𝑑𝑥𝑥𝑇𝑇𝑥𝑥
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     on     𝑦𝑦 = 1 + 𝑑𝑑, 

𝑇𝑇 = 1
2𝐻𝐻

     on     𝑦𝑦 = 𝑓𝑓(𝑥𝑥), 
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�𝑢𝑢𝑦𝑦 + 𝐴𝐴2𝑣𝑣𝑥𝑥�(1− 𝐴𝐴2𝑑𝑑𝑥𝑥2) + 2𝐴𝐴2�𝑣𝑣𝑦𝑦 − 𝑢𝑢𝑥𝑥� = −(1 + 𝐴𝐴2𝑑𝑑𝑥𝑥2)1/2�𝑇𝑇𝑥𝑥 − 𝑑𝑑𝑥𝑥𝑇𝑇𝑦𝑦�   on     𝑦𝑦 = 1 + 𝑑𝑑, 

𝜓𝜓 = 𝜓𝜓𝑦𝑦 = 0     on     𝑦𝑦 = 𝑓𝑓(𝑥𝑥), 

and no net flow condition becomes 

𝜓𝜓 = 0     on     𝑦𝑦 = 1 + 𝑑𝑑. 
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In a limit of a small aspect ratio 𝐴𝐴 → 0, the asymptotic power series are defined by 

𝑇𝑇 = 𝑇𝑇0 + 𝐴𝐴𝑇𝑇1 + 𝐴𝐴2𝑇𝑇2 +⋯ 

𝑤𝑤 = 𝑤𝑤0 + 𝐴𝐴𝑤𝑤1 + 𝐴𝐴2𝑤𝑤2 + ⋯ 

𝜓𝜓 = 𝜓𝜓0 + 𝐴𝐴𝜓𝜓1 + 𝐴𝐴2𝜓𝜓2 + ⋯ 

𝑝𝑝 = 𝑝𝑝0 + 𝐴𝐴𝑝𝑝1 + 𝐴𝐴2𝑝𝑝2 +⋯ 

𝑑𝑑 = 𝐴𝐴𝑑𝑑1 + 𝐴𝐴2𝑑𝑑2 +⋯ 

Since 𝐶𝐶𝑀𝑀 = 𝑂𝑂(𝐴𝐴6), 𝑑𝑑1 = 𝑑𝑑2 = 0 is trivial, which the deformation of the interface vanishes in the second-

order solutions. 

 

Asymptotic solutions 

The basic solution 𝑇𝑇0  linearly decreases in the vertical direction and changes with following the 

sinusoidal profile in the horizontal direction, as shown in figure 1. This temperature gradient along the 

interface causes a counter-clockwise rotating vortex. Owing to the order of Marangoni and Reynolds 

numbers, the first corrections are trivial. The convection terms appear starting from the second 

corrections. 

 

We can split as 𝑇𝑇2 = 𝑇𝑇2D + 𝑇𝑇2C by the linear combination of two parts, where superscripts D and C denote 

that the quantities come from the horizontal diffusion and convection of 𝑇𝑇0 , respectively. 𝑇𝑇2C  and 

corresponding temperature gradient along the interface intensify the overall flows, as shown in figure 2.  

Figure 1. Color contour of 𝑻𝑻𝟎𝟎 and streamlines corresponding 
to 𝝍𝝍𝟎𝟎 when 𝑯𝑯 = 𝟎𝟎.𝟐𝟐 and 𝑩𝑩𝑩𝑩 = 𝟎𝟎.𝟏𝟏. The solid line represents 
a counter-clockwise rotation. 
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Apart from that, 𝑇𝑇2D  shows a different aspect comparing to 𝑇𝑇0  with respect to the direction of the 

temperature gradient. The change in the direction of the temperature gradient causes a clockwise rotating 

vortex, as shown in figure 3. Those behaviors arise from the horizontal heat diffusion −𝑇𝑇0,𝑥𝑥𝑥𝑥. 
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Figure 2. Color contour of 𝑻𝑻𝟐𝟐𝐂𝐂 and streamlines corresponding 
to 𝝍𝝍𝟐𝟐

𝐡𝐡𝐂𝐂  when 𝑯𝑯 = 𝟎𝟎.𝟐𝟐  and 𝑩𝑩𝑩𝑩 = 𝟎𝟎.𝟏𝟏 . 𝝍𝝍𝟐𝟐
𝐡𝐡𝐂𝐂  is a part of 

homogeneous solutions in second-order correction for 
momentum transfer. 

Figure 3. Color contour of 𝑻𝑻𝟐𝟐𝐃𝐃 and streamlines corresponding to 
𝝍𝝍𝟐𝟐
𝐡𝐡𝐃𝐃  when 𝑯𝑯 = 𝟎𝟎.𝟐𝟐  and 𝑩𝑩𝑩𝑩 = 𝟎𝟎.𝟏𝟏 . 𝝍𝝍𝟐𝟐

𝐡𝐡𝐃𝐃  is a part of 
homogeneous solutions in second-order correction for 
momentum transfer. The dotted line represents a clockwise 
rotation. 


